長(zhǎng)方體ABCD-A1B1C1D1的頂點(diǎn)均在同一個(gè)球面上,AB=AA1=1,BC=
2
,則該球的體積為
 
考點(diǎn):球的體積和表面積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:求出長(zhǎng)方體的對(duì)角線長(zhǎng),可得球的直徑、半徑,即可求出球的體積.
解答: 解:∵長(zhǎng)方體ABCD-A1B1C1D1的頂點(diǎn)均在同一個(gè)球面上,AB=AA1=1,BC=
2

∴長(zhǎng)方體的對(duì)角線長(zhǎng)為
1+1+2
=2,
∴球的直徑為2,
∴球的半徑為1,
∴球的體積為
4
3
π•13
=
4
3
π

故答案為:
4
3
π
點(diǎn)評(píng):本題考查球的體積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的唯一零點(diǎn)同時(shí)在(0,4),(0,2),(1,2),(1,
3
2
)內(nèi),則與f(0)符號(hào)相同的是(  )
A、f(4)
B、f(2)
C、f(1)
D、f(
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列命題:
①“x>1”是“x>2”的充分不必要條件;
②若sinα≠
1
2
,則α≠
π
6
;
③“公比大于的等比數(shù)列是遞增數(shù)列”的逆否命題;
④命題“?x0∈R,使x02-x0+1≤0”的否定.
其中真命題的序號(hào)是(  )
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l1:mx-2y-6=0與直線l2:(3-m)x-y+2m=0互相平行,則l1與l2間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓O的半徑為定長(zhǎng)r,A是圓O外一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+clnx,(其中a,b,c為實(shí)常數(shù)) 
(Ⅰ)當(dāng)b=0,c=1時(shí),討論f(x)的單調(diào)區(qū)間;
(Ⅱ)曲線y=f(x)(其中a>0)在點(diǎn)(1,f(1))處的切線方程為y=3x-3,
(。┤艉瘮(shù)f(x)無(wú)極值點(diǎn)且f′(x)存在零點(diǎn),求a,b,c的值;
(ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn),證明f(x)的極小值小于-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題“p∨q”為真,“¬p”為真,則( 。
A、p真q真B、p真q假
C、p假q真D、p假q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,若|
BC
+
BA
|=|
BC
+
AB
|,則四邊形ABCD是( 。
A、菱形B、矩形
C、正方形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足
x+2y-4≤0
x-y-1≤0
x≥1
,則x+y的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案