20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線為$y=\sqrt{5}x$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{6}}{6}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

分析 根據(jù)雙曲線的漸近線方程得到a,b的關(guān)系,再根據(jù)離心率公式計算即可.

解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線為$y=\sqrt{5}x$,
∴$\frac{a}$=$\sqrt{5}$,
∴雙曲線的離心率為e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\sqrt{6}$
故選:D.

點評 本題考查雙曲線的方程和性質(zhì),考查漸近線方程的運用,考查離心率的求法,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,輸出的n值為( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.為了得到函數(shù)y=$\sqrt{2}$cos2x的圖象,可以將函數(shù)y=sin2x+cos2x的圖象至少向左平移$\frac{π}{8}$個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)正三棱柱ABC-A'B'C'中,$AA'=2,AB=2\sqrt{3}$,則該正三棱柱外接球的表面積是20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=4+loga(x-1)(a>0,且a≠1)的圖象恒過定點A,則點A的坐標(biāo)是(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平行四邊形ABCD中,AB=3,AD=2,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AQ}$=$\frac{1}{2}$$\overrightarrow{AD}$,若$\overrightarrow{CP}$•$\overrightarrow{CQ}$=12,則∠BAD=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,正方形ABCD的邊長等于2,平面ABCD⊥平面ABEF,AF∥BE,BE=2AF=2,EF=$\sqrt{3}$.
(Ⅰ)求證:AC∥平面DEF;
(Ⅱ)求三棱錐C-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)$f(x)=sinx(sinx-\sqrt{3}cosx)$的圖象向左平移$\frac{π}{12}$個單位,得到函數(shù)g(x)的圖象,則下列關(guān)于g(x)敘述正確的是(  )
A.g(x)的最小正周期為2πB.g(x)在$[{-\frac{π}{8},\frac{3π}{8}}]$內(nèi)單調(diào)遞增
C.g(x)的圖象關(guān)于$x=\frac{π}{12}$對稱D.g(x)的圖象關(guān)于$(-\frac{π}{8},0)$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知四棱錐P-ABCD的底面是菱形,對角線AC,BD交于點O,OA=4,OB=3,OP=4,OP⊥底面ABCD,設(shè)點M滿足$\overrightarrow{PM}$=$\frac{1}{2}$$\overrightarrow{MC}$.
(1)求直線PA與平面BDM所成角的正弦值;
(2)求點P到平面BDM  的距離.

查看答案和解析>>

同步練習(xí)冊答案