分析 (Ⅰ)連結(jié)BD,記AC∩BD=O,取DE的中點(diǎn)G,連結(jié)OG、FG,推導(dǎo)出四邊形AOGF是平行四邊形,從而AC∥FG,由此能證明AC∥平面DEF.
(Ⅱ)在面ABEF中,過F作FH∥AB,交BE于點(diǎn)H,推導(dǎo)出FE⊥EB,從而FE⊥AF,三棱錐C-DEF的體積VC-DEF=VA-DEF=VD-AEF,由此能求出三棱錐C-DEF的體積.
解答 證明:(Ⅰ)連結(jié)BD,記AC∩BD=O,取DE的中點(diǎn)G,連結(jié)OG、FG,
∵點(diǎn)O、G分別是BD和ED的中點(diǎn),∴OG$\underset{∥}{=}$$\frac{1}{2}$BE,
又AF$\underset{∥}{=}$$\frac{1}{2}BE$,∴OG$\underset{∥}{=}$AF,∴四邊形AOGF是平行四邊形,
∴AO∥FG,即AC∥FG,
又AC?面DEF,F(xiàn)G?平面DEF,
∴AC∥平面DEF.
解:(Ⅱ)在面ABEF中,過F作FH∥AB,交BE于點(diǎn)H,
由已知條件知,在梯形ABEF中,AB=FH=2,EF=$\sqrt{3}$,EH=1,
∴FH2=EF2+EH2,即FE⊥EB,從而FE⊥AF,
∵AC∥平面DEF,∴點(diǎn)C到平面DEF的距離為AF=BH=2-1=1,∠AFE=90°,
∴${S}_{△AEF}=\frac{1}{2}×AF×EF=\frac{1}{2}×1×\sqrt{3}=\frac{\sqrt{3}}{2}$.
∴三棱錐C-DEF的體積VC-DEF=VA-DEF=VD-AEF=$\frac{1}{3}×{S}_{△AEF}×AD$=$\frac{1}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{\sqrt{3}}{3}$.
點(diǎn)評 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -20 | B. | 20 | C. | -15 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{6}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com