【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:

經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為,請用說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測超市廣告費(fèi)支出為3萬元時(shí)的銷售額.

參數(shù)數(shù)據(jù)及公式:,,

【答案】1;(2)二次函數(shù)回歸模型更好,預(yù)測值為萬元.

【解析】試題分析:(1)代入公式可求得 的值,由此可得線性回歸方程;(2)比較 的值,可知二次函數(shù)回歸模型更合適;將 代入二次函數(shù)回歸模型可得銷售額。

試題解析:

(1)

所以,關(guān)于的線性回歸方程是

(2)∵,∴二次函數(shù)回歸模型更合適.

當(dāng)萬元時(shí),預(yù)測超市銷售額為萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形的平行投影仍是三角形,則下列命題

①三角形的高線的平行投影,一定是這個(gè)三角形的平行投影的高線;

②三角形的中線的平行投影,一定是這個(gè)三角形的平行投影的中線

③三角形的角平分線的平行投影,一定是這個(gè)三角形的平行投影的角平分線

④三角形的中位線的平行投影,一定是這個(gè)三角形的平行投影的中位線.

其中正確的命題有 (   )

A. ①② B. ②③

C. ③④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過100度時(shí),按每度0.57元計(jì)算;每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.

(Ⅰ)設(shè)月用電度時(shí),應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:

月份

一月

二月

三月

合計(jì)

交費(fèi)金額

76元

63元

45.6元

184.6元

問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在高一年級學(xué)生中,對自然科學(xué)類、社會科學(xué)類校本選修課程的選課意向進(jìn)行調(diào)查.現(xiàn)從高一年級學(xué)生中隨機(jī)抽取名學(xué)生,其中男生名;在這名學(xué)生中選擇社會科學(xué)類的男生、女生均為名.

(1)試問:從高一年級學(xué)生中隨機(jī)抽取人,抽到男生的概率約為多少?

(2)根據(jù)抽取的名學(xué)生的調(diào)查結(jié)果,完成下列列聯(lián)表.并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為科類的選擇與性別有關(guān)?

選擇自然科學(xué)類

選擇社會科學(xué)類

合計(jì)

男生

女生

合計(jì)

附: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別根據(jù)下列條件,求對應(yīng)雙曲線的標(biāo)準(zhǔn)方程.

(1)右焦點(diǎn)為,離心率;

(2)實(shí)軸長為4的等軸雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)若,不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若 上最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,點(diǎn)在橢圓上, 為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)已知點(diǎn)為橢圓上的三點(diǎn),若四邊形為平行四邊形,證明:四邊形的面積為定值,并求該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角的對邊分別是,已知為銳角,且.

(Ⅰ)求的大;

(Ⅱ)設(shè)函數(shù),其圖象上相鄰兩條對稱軸間的距離為.將函數(shù)的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若上存在極值點(diǎn),求的取值范圍;

(2)設(shè), ,若存在最大值,記為,則當(dāng)時(shí), 是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案