設(shè)命題p:平面α∩平面β=l,若m⊥l,則m⊥β;命題q:函數(shù)y=cos(x-
π
2
)的圖象關(guān)于直線x=
π
2
對稱.則下列判斷正確的是( 。
A、p為真B、¬q為假
C、p∨q為假D、p∧q為真
考點(diǎn):復(fù)合命題的真假
專題:簡易邏輯
分析:首先,判斷命題p和命題q的真假,然后,結(jié)合復(fù)合命題的真假情況進(jìn)行判斷.
解答: 解:由命題p:
∵m⊥l,
∴m∥β或m⊥β或m?β,
∴命題p為假命題;
由命題q得:
y=cos(x-
π
2
)=cos(
π
2
-x)=sinx,
∴y=sinx的圖象關(guān)于直線x=
π
2
對稱.
∴命題q為真命題;
∴命題¬q為假命題;
故選B.
點(diǎn)評:本題重點(diǎn)考查命題的真假判斷,復(fù)合命題的真值表的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一次實(shí)驗(yàn):向如圖所示的正方形中隨機(jī)撒一大把豆子,經(jīng)查數(shù),落在正方形中的豆子的總數(shù)為N粒,其中m(m<N)粒豆子落在該正方形的內(nèi)切圓內(nèi),以此估計(jì)圓周率π為( 。
A、
m
N
B、
2m
N
C、
3m
N
D、
4m
N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列等式中,成立的是( 。
A、sin(
π
2
-x)=cos(
π
2
-x)
B、sin(x+2π)=sinx
C、sin(2π+x)=-sinx
D、cos(π+x)=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)i(2+3i)對應(yīng)點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象向右平移
π
6
個(gè)單位,得到y(tǒng)=cos(2x+φ),φ∈(-π,π]的圖象,則φ的值為(  )
A、
3
B、-
3
C、
6
D、-
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三角形ABC的頂點(diǎn)A(
3
,1),B(3
3
,1),頂點(diǎn)C在第一象限,若點(diǎn)M(x,y)在△ABC的內(nèi)部或邊界,則z=
OA
OM
取最大值時(shí),3x2+y2有( 。
A、定值52B、定值82
C、最小值52D、最小值50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinα+cosα=
7
13
(0<α<π)
,則tanα=(  )
A、-
1
3
B、
12
5
C、-
12
5
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,直線l過F2交橢圓于B,C兩點(diǎn).
(1)如果直線l的方程為y=x-1,且△F1BC為直角三角形,求橢圓方程;
(2)證明:以A為圓心,半徑為b的圓上任意一點(diǎn)到F1,F(xiàn)2的距離之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0.
(1)討論f(x)的單調(diào)性;
(2)若不等式f(x)<ax恒成立,求實(shí)數(shù)a取值范圍;
(3)若方程f(x)=0存在兩個(gè)異號實(shí)根x1,x2,求證:x1+x2>0.

查看答案和解析>>

同步練習(xí)冊答案