20.復(fù)數(shù)z=$\frac{i+2}{i}$對應(yīng)的點在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出z的坐標(biāo)得答案.

解答 解:∵z=$\frac{i+2}{i}$=$\frac{(i+2)(-i)}{-{i}^{2}}=1-2i$,
∴復(fù)數(shù)z=$\frac{i+2}{i}$對應(yīng)的點的坐標(biāo)為(1,-2),在第四象限.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是某空間幾何體的三視圖,則該幾何體的棱長不可能為(  )
A.$4\sqrt{2}$B.$\sqrt{41}$C.$3\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點,
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知復(fù)數(shù)z=$\frac{{a}^{2}-7a+6}{{a}^{2}-1}$+(a2-5a-6)i(a∈R),試求實數(shù)a分別取什么值時,對應(yīng)的點
(1)在實軸上;
(2)位于復(fù)平面第一象限;
(3)在直線x+y=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)m∈R,復(fù)數(shù)z=(2m2+m-1)+(-m2-2m-3)i,若Z為純虛數(shù),則m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)z=2+i的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,則滿足f(2x-1)<f($\frac{1}{3}$)的x的取值范圍是($\frac{1}{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD=2,A是PB中點.E是BC中點.現(xiàn)沿AD把平面PAD折起,使得PA⊥AB,連結(jié)PB.

(Ⅰ)求證:DE⊥平面PAE;
(Ⅱ)求AE與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.把y=sinx的圖象向右平移$\frac{π}{8}$后,再把各點橫坐標(biāo)伸長到原來的2倍,得到的函數(shù)的解析式為( 。
A.y=sin($\frac{x}{2}$-$\frac{π}{8}$)B.y=sin($\frac{x}{2}$+$\frac{π}{8}$)C.y=sin(2x-$\frac{π}{8}$)D.y=sin(2x-$\frac{π}{4}$)

查看答案和解析>>

同步練習(xí)冊答案