10.把y=sinx的圖象向右平移$\frac{π}{8}$后,再把各點(diǎn)橫坐標(biāo)伸長到原來的2倍,得到的函數(shù)的解析式為( 。
A.y=sin($\frac{x}{2}$-$\frac{π}{8}$)B.y=sin($\frac{x}{2}$+$\frac{π}{8}$)C.y=sin(2x-$\frac{π}{8}$)D.y=sin(2x-$\frac{π}{4}$)

分析 令f(x)=sinx,可求y=f(x-$\frac{π}{8}$)的解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換即可求得答案.

解答 解:令f(x)=sinx,
則y=f(x-$\frac{π}{8}$)=sin(x-$\frac{π}{8}$),再將所得的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,
得:y=sin($\frac{1}{2}$x-$\frac{π}{8}$).
故選:A.

點(diǎn)評 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{i+2}{i}$對應(yīng)的點(diǎn)在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋擲一均勻的正方體玩具(各面分別標(biāo)有數(shù)字1、2、3、4、5、6),事件A表示“朝上一面的數(shù)是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過3”,則P(A∪B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在($\frac{2}{x}$+$\sqrt{x}$)n的展開式中,各項(xiàng)系數(shù)之和為M,各二項(xiàng)式系數(shù)之和為N,且8M=27N,則展開式中的常數(shù)項(xiàng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{4x-y-4≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則${log}_{\sqrt{3}}(\frac{1}{a}+\frac{2})$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,已知$\overrightarrow{a}$=(-1,$\sqrt{2}$),|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.$2\sqrt{3}$B.$2\sqrt{6}$C.$4\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx-x2+ax.
(1)若函數(shù)f(x)在(0,e]上單調(diào)遞增,試求a的取值范圍;
(2)設(shè)函數(shù)f(x)在點(diǎn)C(1,f(1))處的切線為l,證明:函數(shù)f(x)圖象上的點(diǎn)都不在直線l的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.f(x)=$\frac{1}{\sqrt{-lo{g}_{2}x}}$的定義域?yàn)閧x|0<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,AB⊥AC,AD⊥BC于D,則$\frac{1}{A{D}^{2}}$=$\frac{1}{A{B}^{2}}$+$\frac{1}{A{C}^{2}}$,類比上述結(jié)論,在四面體ABCD中,若AB,AC,AD兩兩垂直,AE⊥平面BCD,則$\frac{1}{A{E}^{2}}$=$\frac{1}{A{D}^{2}}$+$\frac{1}{A{B}^{2}}$+$\frac{1}{A{C}^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案