12.已知偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,則滿足f(2x-1)<f($\frac{1}{3}$)的x的取值范圍是($\frac{1}{3}$,$\frac{2}{3}$).

分析 由題意根據(jù)f(2x-1)<f($\frac{1}{3}$),可得|2x-1|<$\frac{1}{3}$,由此求得求得x的范圍.

解答 解:偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,則由f(2x-1)<f($\frac{1}{3}$),
可得|2x-1|<$\frac{1}{3}$,∴-$\frac{1}{3}$<2x-1<$\frac{1}{3}$,求得$\frac{1}{3}$<x<$\frac{2}{3}$,
故x的取值范圍為($\frac{1}{3}$,$\frac{2}{3}$),
故答案為:($\frac{1}{3}$,$\frac{2}{3}$).

點(diǎn)評 本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的三視圖如圖所示,該三棱錐的外接球體積是(  )
A.B.$\frac{8}{3}$πC.16πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點(diǎn)P在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上,它到左焦點(diǎn)的距離等于它到右準(zhǔn)線的距離,則點(diǎn)P的橫坐標(biāo)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{i+2}{i}$對應(yīng)的點(diǎn)在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=x4+e|x|,則滿足不等式2f(lnt)-f(ln$\frac{1}{t}$)≤f(2)的實(shí)數(shù)t的集合是[e-2,e2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.兩座燈塔A,B與海洋觀察站C的距離分別為a海里、2a海里,燈塔A在觀察站的北偏東35°,燈塔B在觀察站的南偏東25°,則燈塔A與燈塔B的距離為( 。
A.3a海里B.$\sqrt{7}$a海里C.$\sqrt{5}$a海里D.$\sqrt{3}$a海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知P是等腰直角△ABC的斜邊BC上的動(dòng)點(diǎn),|$\overrightarrow{AB}$|=2,則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋擲一均勻的正方體玩具(各面分別標(biāo)有數(shù)字1、2、3、4、5、6),事件A表示“朝上一面的數(shù)是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過3”,則P(A∪B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx-x2+ax.
(1)若函數(shù)f(x)在(0,e]上單調(diào)遞增,試求a的取值范圍;
(2)設(shè)函數(shù)f(x)在點(diǎn)C(1,f(1))處的切線為l,證明:函數(shù)f(x)圖象上的點(diǎn)都不在直線l的上方.

查看答案和解析>>

同步練習(xí)冊答案