已知sn為等差數(shù)列{an}的前n項(xiàng)的和,a2+a5=4,s7=21,則a7的值為________.

9
分析:把已知條件a2+a5=4以及s7=21都用a1和d表示出來(lái),求出a1和d,再代入通項(xiàng)公式a7=a1+(7-1)d即可求出a7的值.
解答:設(shè)等差數(shù)列{an}的公差為d,
由題得s7=7a1+d=21?a1+3d=3 ①,
a2+a5=4?2a1+5d=4 ②
聯(lián)立①②解得d=2,a1=-3.
所以a7=a1+(7-1)d=9.
故答案為9.
點(diǎn)評(píng):本題考查等差數(shù)列,通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n和,若a4=-48,a9=-33,
(1)求an的通項(xiàng)公式;
(2)當(dāng)n為何值時(shí),Sn最?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a4=9,a9=-6,Sn=63,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a1=-2012,
S2011
2011
-
S2009
2009
=2
,則S2012=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)二模)已知Sn為等差數(shù)列{an}的前n項(xiàng)和,且a3=S3=9
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若等比數(shù)列{bn}滿足b1=a2,b4=S4,求{bn}的前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1=-2012,
S2010
2010
-
S2004
2004
=6
,則S2013等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案