【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),M為AB的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求證:CM∥平面BEF;
(3)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.
【答案】
(1)證明:∵BP=BC,EP=EC,∴BE⊥PC.
∵PB⊥底面ABC,∴PB⊥AC,
又AC⊥BC,PB∩BC=B,∴AC⊥平面PBC,
∴AC⊥BE.
又PC∩AC=C,∴BE⊥平面PAC.
(2)證明:取AF得中點(diǎn)Q,連接CQ,MQ.
∵2PF=FA,∴點(diǎn)F為PQ的中點(diǎn),
由三角形的中位線定理可得EF∥CQ,BF∥MQ,
又CQ∩MQ=Q,∴平面BEF∥平面CMQ,
∴CM∥平面BEF.
(3)證明:建立如圖所示的空間直角坐標(biāo)系,
則B(0,0,0),P(0,0,2),C(2,0,0),A(2,2,0),E(1,0,1),F(xiàn) .
, .
設(shè)平面BEF的法向量為 =(x,y,z),則 ,令x=1,則z=﹣1,y=1.
∴ =(1,1,﹣1).取平面ABC的法向量 .
則 = = =﹣ .
∴平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值為 .
【解析】(1)利用等腰三角形的性質(zhì)可得BE⊥PC.再利用線面垂直的判定和性質(zhì)即可證明BE⊥平面PAC;(2)取AF得中點(diǎn)Q,連接CQ,MQ.利用已知及三角形的中位線定理可得EF∥CQ,BF∥MQ,即可得到面面平行:平面BEF∥平面CMQ,進(jìn)而得到線面平行;(3)通過(guò)建立空間直角坐標(biāo)系,利用兩個(gè)平面的法向量即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)直線與平面垂直的判定的理解,了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱柱中,已知側(cè)面, , , .
(1)求證: 平面;
(2)是棱上的一點(diǎn),若二面角的正弦值為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=10,an+1=9Sn+10.
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè) 對(duì)所有的n∈N*都成立的最大正整數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下命題:
①如果向量 , 與任何向量不能構(gòu)成空間向量的一組基底,那么 , 的關(guān)系是不共線;
②O,A,B,C為空間四點(diǎn),且向量 , , 不構(gòu)成空間的一個(gè)基底,則點(diǎn)O,A,B,C一定共面;
③已知向量 , , 是空間的一個(gè)基底,則向量 + , ﹣ , 也是空間的一個(gè)基底;
④△ABC中,A>B的充要條件是sinA>sinB.
其中正確的命題個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 ,圓 .
(1)求兩圓公共弦所在直線的方程;
(2)直線ι過(guò)點(diǎn)(4,﹣4)與圓C1相交于A,B兩點(diǎn),且 ,求直線ι的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,定點(diǎn),點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)在直線上,點(diǎn)在直線上,且滿(mǎn)足.
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作斜率為的直線,與曲線交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得,若存在,求出直線的斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的 ,令 ,下面說(shuō)法錯(cuò)誤的是( )
A.若 與 共線,則 ⊙ =0
B.⊙ = ⊙
C.對(duì)任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com