11.設(shè)集合M={x|x2-2x-3<0},N={x|x<1},則M∩∁RN等于( 。
A.[-1,1]B.(-1,0)C.[1,3)D.(0,1)

分析 化簡(jiǎn)集合M、求出∁RN,再計(jì)算M∩∁RN即可.

解答 解:集合M={x|x2-2x-3<0}={x|-1<x<3},
N={x|x<1},
∴∁RN={x|x≥1},
∴M∩∁RN={x|1≤x<3}=[1,3).
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=x-ln(x+1)+$\frac{a-1}{a}$.
(Ⅰ)若關(guān)于x的不等式f(x)≤0有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若m>n>0,求證:em-n-1>ln(m+1)-ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.曲線極坐標(biāo)方程ρ=2cos 2θ,該曲線與坐標(biāo)軸的交點(diǎn)個(gè)數(shù)是3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某工廠的設(shè)備使用年限x(年)與維修費(fèi)用y(萬(wàn)元)之間的回歸直線方程為$\widehat{y}$=0.8x+1.5,那么設(shè)備使用前3年的維修費(fèi)用約為3.9萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有1×12,2×6,3×4三種,其中3×4是三種分解中,兩數(shù)差的絕對(duì)值最小的,我們稱3×4為12的最佳分解.當(dāng)p×q(p≤q且p,q∈N*)是正整數(shù)n的最佳分解時(shí),我們規(guī)定函數(shù)f(n)=$\frac{p}{q}$,例如f(12)=$\frac{3}{4}$,則關(guān)于函數(shù)f(n)有下列敘述:①f(24)=$\frac{3}{2}$;②f(144)=$\frac{9}{16}$;   ③f(13)=$\frac{1}{13}$; ④f(28)=$\frac{4}{7}$.
其中正確的有③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知雙曲線方程$\frac{x^2}{4}$-$\frac{y^2}{3}$=1.則該雙曲線的左焦點(diǎn)坐標(biāo)是(-2$\sqrt{7}$,0),離心率為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=-$\frac{1}{3}$x3+bx2+cx+bc.
(Ⅰ)若函數(shù)f(x)在x=1處有極值-$\frac{4}{3}$,試確定b、c的值;
(Ⅱ)若b=1,f(x)存在單調(diào)遞增區(qū)間,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{1}{2}$x2+(2a3-a2)lnx-(a2+2a-1)x,x=1為其極值點(diǎn),則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在等差數(shù)列{an}中,a1=2,S3=9.
(1)求{an}的通項(xiàng)公式an;
(2)求{2${\;}^{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案