【題目】已知拋物線:(),圓:(),拋物線上的點(diǎn)到其準(zhǔn)線的距離的最小值為.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)如圖,點(diǎn)是拋物線在第一象限內(nèi)一點(diǎn),過(guò)點(diǎn)P作圓的兩條切線分別交拋物線于點(diǎn)A,B(A,B異于點(diǎn)P),問(wèn)是否存在圓使AB恰為其切線?若存在,求出r的值;若不存在,說(shuō)明理由.
【答案】(1)的方程為,準(zhǔn)線方程為.(2)存在,
【解析】
(1)由得到p即可;
(2)設(shè),利用點(diǎn)斜式得到PA的的方程為,由到PA的距離為半徑可得,同理,同理寫出直線AB的方程,利用點(diǎn)到直線AB的距離為半徑建立方程即可.
解:(1)由題意得,解得,
所以拋物線的方程為,準(zhǔn)線方程為.
(2)由(1)知,.
假設(shè)存在圓使得AB恰為其切線,設(shè),,
則直線PA的的方程為,即.
由點(diǎn)到PA的距離為r,得,
化簡(jiǎn),得,
同理,得.
所以,是方程的兩個(gè)不等實(shí)根,
故,.
易得直線AB的方程為,
由點(diǎn)到直線AB的距離為r,得,
所以,
于是,,
化簡(jiǎn),得,即.
經(jīng)分析知,,因此.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,1)的直線l與橢圓C交于兩點(diǎn)A,B.己知在橢圓C上存在點(diǎn)Q,使得四邊形OAQB是平行四邊形,求Q的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在拋物線上,過(guò)點(diǎn)的直線與拋物線交于A,B兩點(diǎn),又過(guò)A,B兩點(diǎn)分作拋物線的切線,兩條切線交于P點(diǎn).記直線PA、PB的斜率分別為和.
(1)求的值;
(2),,求四邊形PAEG面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖平面PAC⊥平面ABC, AC⊥BC,PE// BC,M,N分別是AE,AP的中點(diǎn),且△PAC是邊長(zhǎng)為2的等邊三角形,BC=3,PE =2.
(1)求證:MN⊥平面PAC;
(2)求平面PAE與平面ABC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求;
(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)角,,的對(duì)邊分別為,,,.設(shè)為線段上一點(diǎn),,有下列條件:
①;②;③.
請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB,平面α過(guò)長(zhǎng)方體頂點(diǎn)D,且平面α∥平面AB1C,平面α∩平面ABB1A1=l,則直線l與BC1所成角的余弦值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解高三年級(jí)學(xué)生在線學(xué)習(xí)情況,統(tǒng)計(jì)了2020年2月18日-27日(共10天)他們?cè)诰學(xué)習(xí)人數(shù)及其增長(zhǎng)比例數(shù)據(jù),并制成如圖所示的條形圖與折線圖的組合圖.
根據(jù)組合圖判斷,下列結(jié)論正確的是( )
A.前5天在線學(xué)習(xí)人數(shù)的方差大于后5天在線學(xué)習(xí)人數(shù)的方差
B.前5天在線學(xué)習(xí)人數(shù)的增長(zhǎng)比例的極差大于后5天的在線學(xué)習(xí)人數(shù)的增長(zhǎng)比例的極差
C.這10天學(xué)生在線學(xué)習(xí)人數(shù)的增長(zhǎng)比例在逐日增大
D.這10天學(xué)生在線學(xué)習(xí)人數(shù)在逐日增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:1(a>b>0),橢圓上的點(diǎn)到焦點(diǎn)的最小距離為且過(guò)點(diǎn)P(,1).
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(3,0)的直線l與橢圓C有兩個(gè)不同的交點(diǎn)P和Q,若點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P',判斷直線P'Q是否經(jīng)過(guò)定點(diǎn),如果經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);如果不經(jīng)過(guò),說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com