11.已知數(shù)列{an}為等差數(shù)列,且a2=4,a6=12,則公差d=( 。
A.6B.3C.8D.2

分析 利用等差數(shù)列的通項(xiàng)公式求解.

解答 解:∵數(shù)列{an}為等差數(shù)列,且a2=4,a6=12,
∴公差d=$\frac{{a}_{6}-{a}_{2}}{6-2}$=$\frac{12-4}{6-2}$=3.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求與橢圓$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{4}$=1共焦點(diǎn)且與雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1有共同漸近線的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=sinx的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位而得到的函數(shù)解析式可以是(  )
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x-$\frac{π}{6}$)C.y=sinx+$\frac{π}{6}$D.y=sinx-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(-2)=3,若f(x)是偶函數(shù).則f(2)=3,若f(x)為奇函數(shù),f(2)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=kx-2,f(1)=-1,則f(2)=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)y=$\frac{2}{x-1}$+1的圖象與直線y=mx(m≠0)只有一個(gè)公共點(diǎn),求這個(gè)公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義在R上的函數(shù)f(x)滿足f(x+3)=-f(x),且當(dāng)x∈[-6,0)時(shí),f(x)=$\sqrt{1-x}$,則f(2017)=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.經(jīng)過點(diǎn)(-1,3)且與直線2x+3y-5=0平行的直線的方程是(  )
A.2x+3y+7=0B.2x+3y-7=0C.3x-2y+7=0D.3x-2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,且an+1=2an+1,
(1)求{an}的通項(xiàng)公式an
(2)若bn=4n-1,${c_n}=\frac{{{a_n}+1}}{2}$,求數(shù)列{bn•cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案