3.已知集合A={x|-1≤x<3},B={x∈Z|x2<4},則A∩B=(  )
A.{0,1}B.{-1,0,1,2}C.{-1,0,1}D.{-2,-1,0,1,2}

分析 求出B中的元素,從而求出A、B的交集即可.

解答 解:A={x|-1≤x<3},B={x∈Z|x2<4}={-1,0,1},
則A∩B={-1,0,1},
故選:C.

點評 本題考查了集合的運算,考查不等式問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若橢圓的左焦點為F,上頂點為B,右頂點為A,當FB⊥AB時,其離心率為$\frac{{\sqrt{5}-1}}{2}$,此類橢圓被稱為“黃金橢圓”.類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=(x-$\frac{1}{x}$)sinx(-π≤x<0或0<x≤π)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在直角坐標系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.
(1)求圓C圓心的極坐標;
(2)設(shè)圓C與直線l交于點A、B,若點P的坐標為(3,$\sqrt{5}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在極坐標系中,直線C1的極坐標方程為$ρsin(θ+\frac{π}{4})=\sqrt{2}$.若以極點為原點,極軸為x軸的正半軸建立平面直角坐標系xOy,則直線C1的直角坐標方程為x+y-2=0;曲線C2的方程為$\left\{\begin{array}{l}x=cost\\ y=1+sint\end{array}\right.$(t為參數(shù)),則C2被 C1截得的弦長為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知{an}為等差數(shù)列,若a1+a5+a9=4π,則cosa5的值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知角α的始邊是x軸非負半軸.其終邊經(jīng)過點$P(-\frac{3}{5},-\frac{4}{5})$,則tanα的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知每一項都是正數(shù)的數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}+1}{1{2a}_{n}}$(n∈N*).
(1)用數(shù)學歸納法證明:a2n+1<a2n-1;
(2)證明:$\frac{1}{6}$≤an≤1;
(3)記Sn為數(shù)列{|an+1-an|}的前n項和,證明:Sn<6(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本25萬元,此外每生產(chǎn)1件這樣的產(chǎn)品,還需增加投入0.5萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為t件時,銷售所得的收入為$({5t-\frac{1}{200}{t^2}})$萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當年產(chǎn)量x的函數(shù)為f(x),求f(x);
(2)當該公司的年產(chǎn)量為多少件時,當年所獲得的利潤最大?

查看答案和解析>>

同步練習冊答案