【題目】如圖,直三棱柱中,,,的中點,點為線段上的一點.

(1),求證: ;

(2),異面直線所成的角為30°,求直線與平面所成角的正弦值.

【答案】(1)證明見解析 (2)

【解析】

1)取中點,連接,,易知要證,先證平面;

2)如圖以為坐標(biāo)原點,分別以,軸,建立空間直角坐標(biāo)系,求出平面的法向量及直線的方向向量,即可得到結(jié)果.

(1)證明:取中點,連接,有,因為,所以,又因為三棱柱為直三棱柱,

所以平面平面,又因為平面平面,

所以平面,又因為平面,

所以

又因為,平面平面,

所以平面,

又因為平面,

所以

因為,

所以.

(2)設(shè),如圖以為坐標(biāo)原點,分別以,軸,建立空間直角坐標(biāo)系,

由 (1)可知,,所以

,,,,

對平面,,,

所以其法向量為.

,

所以直線與平面成角的正弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到地區(qū)用戶滿意度評分的頻率分布直方圖和地區(qū)用戶滿意度評分的頻數(shù)分布表.

地區(qū)用戶滿意度評分的頻率分布直方圖如下:

地區(qū)用戶滿意度評分的頻數(shù)分布表如下:

1)在圖中作出地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可).

地區(qū)用戶滿意度評分的頻率分布直方圖

2)根據(jù)用戶滿意度評分,將用戶的滿意度分為三個等級:

公司負責(zé)人為了解用戶滿意度情況,從B地區(qū)調(diào)查8戶,其中有兩戶滿意度等級是不滿意.求從這8戶中隨機抽取2戶檢查,抽到不滿意用戶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓

1)若直線過點且在兩坐標(biāo)軸上截距之和等于,求直線的方程;

2)設(shè)是圓上的動點,求為坐標(biāo)原點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)是否存在負實數(shù)a,使,函數(shù)有最小值-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知點的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進行調(diào)查,已知該校的高一、高二、高三這三個年級分別有186、6個班級.

(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數(shù);

(Ⅱ)若從抽取的5個班級中隨機抽取2個班級進行調(diào)查結(jié)果的對比,求這2個班級中至少有1個班級來自高一年級的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】排一張5個獨唱和3個合唱的節(jié)目單,如果合唱不排兩頭,且任何兩個合唱不相鄰,則這種事件發(fā)生的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著高考制度的改革,某省即將實施“語數(shù)外+3”新高考的方案,2019年秋季入學(xué)的高一新生將面臨從物理(物)、化學(xué)(化)、生物(生)、政治(政)、歷史(歷)、地理(地)六科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”某市為了順利地迎接新高考改革,在某高中200名學(xué)生中進行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程組合中選擇一種學(xué)習(xí)模擬選課數(shù)據(jù)統(tǒng)計如下表:

為了解學(xué)生成績與學(xué)生模擬選課情況之問的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進行分析

(1)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機抽取3人,求這3人中至少有2人要學(xué)習(xí)生物的概率:

(2)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機抽取3人,記這3人中要學(xué)習(xí)地理的人數(shù)為x,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集為,求實數(shù)的值;

(2)在(1)的條件下,若不等式解集非空,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案