17.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ x-3≤0\end{array}\right.$則z=x+2y的最小值為3.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直線y=$-\frac{1}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線經(jīng)過點(diǎn)C時,
直線y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此時z最小,
由$\left\{\begin{array}{l}{x-3=0}\\{x+y-3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,即C(3,0)
此時z=3+2×0=3.
故答案為:3

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知不等式(m-n)2+(m-lnn+λ)2≥2對任意m∈R,n∈(0,+∞)恒成立,則實(shí)數(shù)λ的取值范圍為λ≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,面積為8的平行四邊形ABCD,A為坐標(biāo)原點(diǎn),B坐標(biāo)為(2,-1),C、D均在第一象限.
(I)求直線CD的方程;
(II)若|BC|=$\sqrt{13}$,求點(diǎn)D的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某汽車銷售公司同時在甲、乙兩地銷售一種品牌車,利潤(單位:萬元)分別為${L_1}=-{x^2}+21x$和L2=2x(其中銷售量單位:輛).若該公司在兩地一共銷售20輛,則能獲得的最大利潤為( 。
A.130萬元B.130.25萬元C.120萬元D.100萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l過點(diǎn)A(-1,0)且與⊙B:x2+y2-2x=0相切于點(diǎn)D,以坐標(biāo)軸為對稱軸的雙曲線E過點(diǎn)D,一條漸進(jìn)線平行于l,則E的方程為( 。
A.$\frac{3{y}^{2}}{4}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{2}$-$\frac{3{y}^{2}}{2}$=1C.$\frac{5{y}^{2}}{3}$-x2=1D.$\frac{3{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,正三角形ABC的外接圓半徑為2,圓心為O,PB=PC=2,D為AP上一點(diǎn),AD=2DP,點(diǎn)D在平面ABC內(nèi)的射影為圓心O.
(Ⅰ)求證:DO∥平面PBC;
(Ⅱ)求平面CBD和平面OBD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“?x>0,$\sqrt{x}≤x-1$”的否定為?x>0,$\sqrt{x}>x-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等比數(shù)列{an}中,a1=2,a3+2是a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=nan,求數(shù)列{bn}的前n項(xiàng)sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)不等式(x-a)(x+a-2)<0的解集為N,若x∈N是$x∈M=[{-\frac{1}{2},2})$的必要條件,則a的取值范圍為$a≤-\frac{1}{2}或a≥\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案