分析 (Ⅰ)利用已知條件列出方程組,求解橢圓的幾何量,然后求解橢圓C的方程;
(Ⅱ)設(shè)直線l的方程為x=my+1,設(shè)M(x1,y1),N(x2,y2),則點(diǎn)M,N的坐標(biāo)是方程組$\left\{{\begin{array}{l}{x=my+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,的兩組解,利用韋達(dá)定理表示三角形的面積,通過(guò)求解三角形的最值求解直線方程.
解答 解:(Ⅰ)由題意得$\left\{{\begin{array}{l}{e=\frac{c}{a}=\frac{1}{2}}\\{b=\frac{{\sqrt{6}}}{{\sqrt{1+1}}}}\\{{a^2}={b^2}+{c^2}}\end{array}}\right.∴\left\{{\begin{array}{l}{a=2}\\{b=\sqrt{3}}\\{c=1}\end{array}}\right.$,所以橢圓C的方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;…(5分)
(Ⅱ)由題意可設(shè)直線l的方程為x=my+1,設(shè)M(x1,y1),N(x2,y2),
則點(diǎn)M,N的坐標(biāo)是方程組$\left\{{\begin{array}{l}{x=my+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,的兩組解,
∴(3m2+4)y2+6my-9=0,∴$\left\{{\begin{array}{l}{△>0}\\{{y_1}+{y_2}=\frac{-6m}{{3{m^2}+4,}}}\\{{y_1}{y_2}=\frac{-9}{{3{m^2}+4}}}\end{array}}\right.$…(7分)
∴${S_{△{F_1}MN}}=\frac{1}{2}|{{F_1}{F_2}}||{{y_1}-{y_2}}|=\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}$
=$\frac{12}{{3\sqrt{{m^2}+1}+\frac{1}{{\sqrt{{m^2}+1}}}}}≤\frac{12}{4}=3$(由對(duì)號(hào)函數(shù)單調(diào)性知道當(dāng)且僅當(dāng)m=0時(shí)取等號(hào)),…(10分)
所以當(dāng)m=0時(shí),${S_{△{F_1}MN}}$取得最大值3,此時(shí)直線l的方程為x=1.…(12分).
點(diǎn)評(píng) 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | -$\frac{\sqrt{2}}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 抽簽法 | B. | 隨機(jī)數(shù)表法 | C. | 系統(tǒng)抽樣法 | D. | 放回抽樣法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[1,1+\sqrt{2}]$ | B. | $[2-\sqrt{2},2+\sqrt{2}]$ | C. | $[\sqrt{2},2\sqrt{2}]$ | D. | $[3-\sqrt{2},3+\sqrt{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{a}+\overrightarrow$=$\overrightarrow{c}$ | B. | $\overrightarrow{a}$-$\overrightarrow$=$\overrightarrow12hj1v7$ | C. | $\overrightarrow$-$\overrightarrow{a}$=$\overrightarrowu7cumpb$ | D. | $\overrightarrow{c}$-$\overrightarrowespm57n$=2$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com