19.命題“存在x0∈(0,$\frac{π}{2}$),tan x0>sin x0”的否定是?x∈(0,$\frac{π}{2}$),tanx≤sinx.

分析 根據(jù)命題“存在x0∈(0,$\frac{π}{2}$),tan x0>sin x0”是特稱命題,其否定為全稱命題,將“?”改為“?”,“>“改為“≤”即可得答案.

解答 解:∵命題“存在x0∈(0,$\frac{π}{2}$),tan x0>sin x0”是特稱命題
∴命題的否定為:?x∈(0,$\frac{π}{2}$),tanx≤sinx.
故答案為:?x∈(0,$\frac{π}{2}$),tanx≤sinx.

點(diǎn)評 本題主要考查全稱命題與特稱命題的相互轉(zhuǎn)化問題.這里注意全稱命題的否定為特稱命題,反過來特稱命題的否定是全稱命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|bx-2|+|bx-b|(b∈R).
(1)當(dāng)b=1時(shí),解不等式f(x)≥x+3;
(2)若不等式f(x)≥4對任意的實(shí)數(shù)x都成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)F1,F(xiàn)2分別是橢圓C的左,右焦點(diǎn),以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓與直線 x-y+$\sqrt{6}$=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)F2的直線l與橢圓C相交于點(diǎn)M,N兩點(diǎn),求使△F1MN面積最大時(shí)直線l的方程及△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)正數(shù)a,b滿足a+2b=2,則$\frac{2}{a}+\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f'(x),當(dāng)x≠0時(shí),f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f({\frac{1}{2}}),b=-2f({-2}),c=-ln2f({ln\frac{1}{2}})$,則a,b,c的大小關(guān)系正確的是( 。
A.b<c<aB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題:①“任意能被2整除的整數(shù)都是偶數(shù)”的否定是“任意能被2整除的整數(shù)不都是偶數(shù)”②“菱形的兩條對角線互相垂直”的逆命題;③“若a>b,a,b∈R,則a+c>b+c”的逆否命題;④“若a+b≠3,則a≠1或b≠2”的否命題;⑤若“p或q”為假命題,則“非p且非q”是真命題.上述命題中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在棱長為a的正方體ABCD-A1B1C1D1中,M是AA1中點(diǎn),則點(diǎn)A到平面MBD的距離是$\frac{{\sqrt{6}}}{6}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在(0,+∞)上函數(shù)f(x)滿足:①當(dāng)x∈[1,3)時(shí),f(x)=1-|x-2|;②f(3x)=3f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,…,xn….若a∈(1,3),則x1+x2+…+x2n=6(3n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在“一帶一路”的建設(shè)中,中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料下表:
井號(hào) I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(1)在散點(diǎn)圖中1~6號(hào)舊井位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;
(2)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過1、3、5、7號(hào)井計(jì)算出的$\hat b,\hat a$的值($\hat b,\hat a$精確到0.01)相比于(1)中b,a的值之差(即:$\frac{\hat b-b},\frac{\hat a-a}{a}$)不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打井,請判斷可否使用舊井?(參考公式和計(jì)算結(jié)果:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x,\sum_{i=1}^4{x_{2i-1}^2}=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(3)設(shè)出油量與鉆探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,在原有井號(hào)2~6的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

同步練習(xí)冊答案