13.已知f(x)=|x-a|+|x-1|
(Ⅰ)當a=2,求不等式f(x)<4的解集;
(Ⅱ)若對任意的x,f(x)≥2恒成立,求a的取值范圍.

分析 (Ⅰ)將a的值帶入,通過討論x的范圍,求出不等式的解集即可;
(Ⅱ)根據(jù)絕對值的性質(zhì)得到關(guān)于a的不等式,解出即可.

解答 解:(Ⅰ)當a=2時,不等式f(x)<4,即|x-2|+|x-1|<4,
可得$\left\{\begin{array}{l}{x≥2}\\{x-2+x-1<4}\end{array}\right.$,或$\left\{\begin{array}{l}{1<x<2}\\{2-x+x-1<4}\end{array}\right.$或$\left\{\begin{array}{l}{x≤1}\\{2-x+1-x<4}\end{array}\right.$,
解得:-$\frac{1}{2}$<x<$\frac{7}{2}$,所以不等式的解集為{x|-$\frac{1}{2}$<x<$\frac{7}{2}$}.
(Ⅱ)∵|x-a|+|x-1|≥|a-1|,當且僅當(x-a)(x-1)≤0時等號成立,
由|a-1|≥2,得a≤-1或a≥3,
即a的取值范圍為(-∞,-1]∪[3,+∞).

點評 本題考查了解絕對值不等式問題,考查絕對值的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$f(x)=\frac{lnx}{x}$,則(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,E是BC中點,M是PD上的中點,F(xiàn)是PC上的動點.
(Ⅰ)求證:平面AEF⊥平面PAD
(Ⅱ)直線EM與平面PAD所成角的正切值為$\frac{\sqrt{6}}{2}$,當F是PC中點時,求二面角C-AF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若定義在R上的函數(shù)f(x)滿足f(x)+f'(x)<1且f(0)=3,則不等式$f(x)>\frac{2}{e^x}+1$(其中e為自然對數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a(sinA-sinB)=(c-b)(sinC+sinB)
(Ⅰ)求角C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則(∁UA)∩(
(∁UB)=( 。
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在平面直角坐標系xOy中,將直線y=x與直線x=1及x軸所圍成的圖形繞x軸旋轉(zhuǎn)一周得到一個圓錐,圓錐的體積V圓錐=${∫}_{0}^{1}$πx2dx=$\frac{π}{3}$x3|${\;}_{0}^{1}$=$\frac{π}{3}$.據(jù)此類比:將曲線y=2lnx與直線y=1及x軸、y軸所圍成的圖形繞y軸旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體,該旋轉(zhuǎn)體的體積V=π(e-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知在平面直角坐標系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\sqrt{2}•tsin\frac{π}{6}\\ y=tcos\frac{7π}{4}-6\sqrt{2}\end{array}\right.$(t是參數(shù))
以原點O為極點,Ox為極軸建立極坐標系,圓C的極坐標方程為$ρ=4cos({θ+\frac{π}{4}})$.
(1)求直線l的普通方程和圓心C的直角坐標;
(2)求圓C上的點到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在三棱柱ABCA1B1C1中,側(cè)面ABB1A1為矩形,AB=3,AA1=3$\sqrt{2}$,D為AA1的中點,BD與AB1交于點O,CO⊥側(cè)面ABB1A1
(Ⅰ)證明:BC⊥AB1;
(Ⅱ)若OC=OA,求二面角A1-AC-B的余弦值.

查看答案和解析>>

同步練習冊答案