【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.

【答案】
(1)解:∵f(x)=|x+1|﹣|x﹣2|= ,f(x)≥1,

∴當(dāng)﹣1≤x≤2時(shí),2x﹣1≥1,解得1≤x≤2;

當(dāng)x>2時(shí),3≥1恒成立,故x>2;

綜上,不等式f(x)≥1的解集為{x|x≥1}


(2)解:原式等價(jià)于存在x∈R使得f(x)﹣x2+x≥m成立,

即m≤[f(x)﹣x2+x]max,設(shè)g(x)=f(x)﹣x2+x.

由(1)知,g(x)= ,

當(dāng)x≤﹣1時(shí),g(x)=﹣x2+x﹣3,其開口向下,對(duì)稱軸方程為x= >﹣1,

∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;

當(dāng)﹣1<x<2時(shí),g(x)=﹣x2+3x﹣1,其開口向下,對(duì)稱軸方程為x= ∈(﹣1,2),

∴g(x)≤g( )=﹣ + ﹣1=

當(dāng)x≥2時(shí),g(x)=﹣x2+x+3,其開口向下,對(duì)稱軸方程為x= <2,

∴g(x)≤g(2)=﹣4+2+3=1;

綜上,g(x)max= ,

∴m的取值范圍為(﹣∞, ]


【解析】(1)由于f(x)=|x+1|﹣|x﹣2|= ,解不等式f(x)≥1可分﹣1≤x≤2與x>2兩類討論即可解得不等式f(x)≥1的解集;(2)依題意可得m≤[f(x)﹣x2+x]max,設(shè)g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三類討論,可求得g(x)max= ,從而可得m的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解絕對(duì)值不等式的解法(含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)證明:若f(x)存在零點(diǎn),則f(x)在區(qū)間(1, ]上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:

①過點(diǎn)(-1,2)的直線方程一定可以表示為y-2=k(x+1)的形式(k∈R);

②過點(diǎn)(-1,2)且在x軸、y軸截距相等的直線方程是xy-1=0;

③過點(diǎn)M(-1,2)且與直線lAxByC=0(AB≠0)垂直的直線方程是B(x+1)+A(y-2)=0;

④設(shè)點(diǎn)M(-1,2)不在直線lAxByC=0(AB≠0)上,則過點(diǎn)M且與l平行的直線方程是A(x+1)+B(y-2)=0;

⑤點(diǎn)P(-1,2)到直線axya2a=0的距離不小于2.

以上命題中,正確的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:Sn=1﹣an(n∈N*),其中Sn為數(shù)列{an}的前n項(xiàng)和. (Ⅰ)試求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足: (n∈N*),試求{bn}的前n項(xiàng)和公式Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(3x+φ)的圖象向右平移動(dòng) 個(gè)單位,得到的圖象關(guān)于y軸對(duì)稱,則|φ|的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=lnx﹣x﹣mx在區(qū)間[1,e2]內(nèi)有唯一的零點(diǎn),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中點(diǎn).
(1)求證:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有30名男職員和20名女職員,公司進(jìn)行了一次全員參與的職業(yè)能力測(cè)試,現(xiàn)隨機(jī)詢問了該公司5名男職員和5名女職員在測(cè)試中的成績(jī)(滿分為30分),可知這5名男職員的測(cè)試成績(jī)分別為16,24,18,

22,20,5名女職員的測(cè)試成績(jī)分別為18,23,23,18,23,則下列說法一定正確的是( )

A. 這種抽樣方法是分層抽樣

B. 這種抽樣方法是系統(tǒng)抽樣

C. 這5名男職員的測(cè)試成績(jī)的方差大于這5名女職員的測(cè)試成績(jī)的方差

D. 該測(cè)試中公司男職員的測(cè)試成績(jī)的平均數(shù)小于女職員的測(cè)試成績(jī)的平均數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案