【題目】設(shè)函數(shù)f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)證明:若f(x)存在零點,則f(x)在區(qū)間(1, ]上僅有一個零點.
【答案】
(1)解:由f(x)= ﹣k ln x,k>0f'(x)=
由f'(x)=0解得x=
f(x)與f'(x)在區(qū)間(0,+∞)上的情況如下:
x | (0, ) | ||
f'(x) | ﹣ | 0 | + |
f(x) | 遞減 | 遞增 |
所以,f(x)的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為(0, );
f(x)在x= 處的極小值為f( )= ,無極大值
(2)證明:由(1)知,f(x)在區(qū)間(0,+∞)上的最小值為f( ).
因為f(x)存在零點,所以 ,從而k≥e
當(dāng)k=e時,f(x)在區(qū)間(1, )上單調(diào)遞減,且f( )=0
所以x= 是f(x)在區(qū)間(1, )上唯一零點.
當(dāng)k>e時,f(x)在區(qū)間(0, )上單調(diào)遞減,
∵ ,
所以f(x)在區(qū)間(1, )上僅有一個零點.
綜上所述,若f(x)存在零點,則f(x)在區(qū)間(1, ]上僅有一個零點
【解析】(1)利用導(dǎo)函數(shù)求得函數(shù)的單調(diào)區(qū)間,兩個不同單調(diào)性區(qū)間的交匯處,函數(shù)取得極值;(2)零點定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是f(x)=0的根.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知三點A(-1,0)、B(t,2)、C(2,1),t∈R,O為坐標(biāo)原點
(I)若△ABC是∠B為直角的直角三角形,求t的值
(Ⅱ)若四邊形ABCD是平行四邊形,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),為實常數(shù).
(1)求的值;
(2)證明:在區(qū)間內(nèi)單調(diào)遞增;
(3)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱臺DEF ABC中,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:平面ABED∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為和(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗公式,,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額不低于25萬元.
(1)設(shè)對乙產(chǎn)品投入資金萬元,求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣cos2x+1,下列結(jié)論中錯誤的是( )
A.f(x)的圖象關(guān)于( ,1)中心對稱
B.f(x)在( , )上單調(diào)遞減
C.f(x)的圖象關(guān)于x= 對稱
D.f(x)的最大值為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關(guān)于(1,0)點對稱,且當(dāng)x≥0時恒有f(x﹣ )=f(x+ ),當(dāng)x∈[0,2)時,f(x)=ex﹣1,則f(2017)+f(﹣2016)=( )
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α為銳角,且 ,函數(shù) ,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)求證:數(shù)列{an+1}為等比數(shù)列;
(3)求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com