分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1),求出切線方程即可;(2)解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點(diǎn)即可.
解答 解:(1)∵f(x)=xex+ex,
∴f′(x)=(x+2)ex,
而f(1)=2e,f′(1)=3e,
故切線方程是:y-2e=3e(x-1),
整理得:3ex-y-e=0;
(2)由(1)令f′(x)>0,解得:x>-2,
令f′(x)<0,解得:x<-2,
故f(x)在(-∞,-2)遞減,在(-2,+∞)遞增,
故x=-2是函數(shù)的極小值點(diǎn).
點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 38 | B. | 39 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 梯形 | B. | 平行四邊形 | C. | 矩形 | D. | 菱形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | (1,+∞) | C. | $[\frac{1}{2e-1},+∞)$ | D. | $(\frac{1}{2e-1},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,2] | B. | (0,2] | C. | (-2,2) | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,4-2\sqrt{2}})$ | B. | $({4-2\sqrt{2},2})$ | C. | $({4-2\sqrt{2},\frac{4}{3}}]$ | D. | $({\frac{4}{3},2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com