【題目】如圖,已知四棱錐的底面是邊長為1的正方形,底面,且.
(1)若點、分別在棱、上,且,,求證:平面;
(2)若點在線段上,且三棱錐的體積為,試求線段的長.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用向量數(shù)量積垂直關(guān)系坐標(biāo)表示表示計算論證線線垂直,再根據(jù)線面垂直判定定理得結(jié)果;
(2)先利用向量求點面距,再根據(jù)體積公式列方程解得向量的坐標(biāo),最后根據(jù)向量的模的坐標(biāo)公式求結(jié)果.
(1)以點為坐標(biāo)原點,為軸正方向,為軸正方向建立空間直角坐標(biāo)系.
則,,,,,
因為,,所以,,
則,,.
,,即垂直于平面中兩條相交直線,
所以平面.
(2),可設(shè),
所以向量的坐標(biāo)為,
平面的法向量為.
點到平面的距離.
中,,,,所以.
三棱錐的體積,所以.
此時向量的坐標(biāo)為,,即線段的長為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的底面邊長和側(cè)棱長都為2,是的中點.
(1)在線段上是否存在一點,使得平面平面,若存在指出點在線段上的位置,若不存在,請說明理由;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求過曲線C上任意一點切線斜率的取值范圍;
(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意
抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點為極點,軸為極軸建立極坐標(biāo)系,曲線的方程為(為參數(shù)),曲線的極坐標(biāo)方程為,若曲線與相交于、兩點.
(1)求的值;
(2)求點到、兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,、分別是、的中點.
(1)設(shè)棱的中點為,證明:平面;
(2)若,,,且平面平面.
(i)求三棱柱的體積;
(ii)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,為等邊三角形,,面積是面積的兩倍,點在側(cè)棱上.
(1)若,證明:平面平面;
(2)若二面角的大小為,且為的中點,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com