【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)時,不等式恒成立,求實數(shù)的取值范圍.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:(Ⅰ)求出,分四種情況討論的范圍,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)分三種情況討論的范圍,分別利用導數(shù)研究函數(shù)的單調性,利用單調性求出的最小值,即可篩選出符合條件的實數(shù)的取值范圍.

試題解析:(Ⅰ) ,

①若,,則,當時,上單調遞增;

②若,,的兩解分別為,則有

(i)若,,當時,,上單調遞增;

(ii)若,,當時,,則,上單調遞減;當時,,則,上單調遞增;

綜上可知,若上單調遞減,在上單調遞增;若,上單調遞增.

(Ⅱ)①若,由(Ⅰ)可知上單調遞增,所以符合題意;

②若,由(Ⅰ)可知上單調遞增,所以符合題意;

③若,,由(Ⅰ)可知上單調遞減,所以當時,不符合題意;

綜上可知,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4,坐標系與參數(shù)方程

已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設Mx,y)為橢圓C上任意一點,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,射線均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線上.經測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農經營,打算在扇形區(qū)域外修建一條公路,分別與射線交于、兩點,并要求與扇形弧相切于點.設(單位:弧度),假設所有公路的寬度均忽略不計.

(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;

(2)試確定的值,使得公路的長度最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標方程為

)求的極坐標方程與的直角坐標方程.

)若上任意一點,過點的直線于點,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,

側棱平面為等腰直角三角形,,且分別是的中點.

Ⅰ)求證:平面;

平面;

Ⅱ)求直線與平面所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)設,求的最小值;

(2)證明:當時,總存在兩條直線與曲線都相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生平均每天課外體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達標

課外體育達標

合計

20

110

合計

(2)通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

參考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案