9.已知集合A={x|1≤x≤5},集合B={X|2m≤2x≤8.2m}
(1)若B⊆A,求實(shí)數(shù)m的取值范圍
(2)若A∪(CRB)=R,求實(shí)數(shù)m的取值范圍.

分析 求解指數(shù)不等式化簡集合B.
(1)由兩集合端點(diǎn)值間的關(guān)系列不等式組得答案;
(2)把A∪(CRB)=R轉(zhuǎn)化為B⊆A得答案.

解答 解:A={x|1≤x≤5},集合B={x|2m≤2x≤8•2m}={x|m≤x≤m+3}.
(1)若B⊆A,則$\left\{\begin{array}{l}{m≥1}\\{m+3≤5}\end{array}\right.$,即1≤m≤2;
(2)若A∪(CRB)=R,
則CRA⊆CRB,即B⊆A,由(1)知1≤m≤2.

點(diǎn)評 本題考查交、并、補(bǔ)集的混合運(yùn)算,考查了集合的包含關(guān)系的判斷及應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計算下列各題.
(1)(C${\;}_{100}^{98}$+C${\;}_{100}^{97}$)÷A${\;}_{101}^{3}$;
(2)C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{10}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠ABC=90°,SA=AB=AD=1,BC=2.
(I)求異面直線BC與SD所成角的大;
(Ⅱ)求證:BC⊥平面SAB;
(Ⅲ)求直線SC與平面SAB所成角大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若正項(xiàng)數(shù)列{an}中,a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*.則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=$\sqrt{n}$-$\sqrt{n-1}$B.an=$\sqrt{n}$+$\sqrt{n-1}$C.an=$\sqrt{n}$-$\sqrt{n+1}$D.an=$\sqrt{n}$+$\sqrt{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sinωxcosωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,則正數(shù)ω的最大值是(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.y=1-2sin(2x+$\frac{π}{3}$)的值域?yàn)閇-1,3],當(dāng)y取最大值時,x=kπ-$\frac{5π}{12}$(k∈Z);當(dāng)y取最小值時,x=kπ+$\frac{π}{12}$(k∈Z),周期為π,單調(diào)遞增區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z);單調(diào)遞減區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π])的圖象如圖所示,試求該函數(shù)的振幅、頻率和初相.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,四邊形OABC是邊長為1的正方形,$\overrightarrow{OA}$=e1,$\overrightarrow{OC}$=e2,D、E分別為AB、BC中點(diǎn).
求:①用e1、e2表示$\overrightarrow{OD}$,$\overrightarrow{OE}$;
②計算$\overrightarrow{OD}$•$\overrightarrow{OE}$;
③∠DOE=θ,求cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.{(x,y)|xy>0}表示位于第一、三象限的點(diǎn)的集合.

查看答案和解析>>

同步練習(xí)冊答案