4.已知函數(shù)f(x)=sinωxcosωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,則正數(shù)ω的最大值是( 。
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 由f(x)=sinωxcosωx=$\frac{1}{2}sin2ωx$在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,利用正弦函數(shù)的單調(diào)性能求出正數(shù)ω的最大值.

解答 解:∵f(x)=sinωxcosωx=$\frac{1}{2}sin2ωx$在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,
∴$\left\{\begin{array}{l}{-\frac{ωπ}{3}≥-\frac{π}{2}}\\{\frac{2ωπ}{3}≤\frac{π}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{ω≤\frac{3}{2}}\\{ω≤\frac{3}{4}}\end{array}\right.$,∴$ω≤\frac{3}{4}$,
∴正數(shù)ω的最大值是$\frac{3}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)中參數(shù)值的最大正值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意二倍角的正弦公式、正弦函數(shù)單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.i為虛數(shù)單位,則i(1-$\sqrt{3}$i)=( 。
A.$\sqrt{3}$-iB.$\sqrt{3}$+iC.-$\sqrt{3}$-iD.-$\sqrt{3}$+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某動(dòng)物種群數(shù)量1月1日低至700,7月1日高至900,其總量在此兩值之間依正弦型曲線變化.
(1)求出種群數(shù)量y關(guān)于時(shí)間t的函數(shù)表達(dá)式;(其中t以年初以來的月為計(jì)量單位)
(2)估計(jì)當(dāng)年3月1日動(dòng)物種群數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C的離心率為$\frac{\sqrt{2}}{2}$,A,B分別為左、右頂點(diǎn),F(xiàn)2為其右焦點(diǎn),P是橢圓C上異于A,B的動(dòng)點(diǎn),且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為-2.
(1)求橢圓C的方程;
(2)若過左焦點(diǎn)F1的直線交橢圓于M,N兩點(diǎn),求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),P分別為棱DD1,CD,B1C的中點(diǎn).求四面體B-PEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|1≤x≤5},集合B={X|2m≤2x≤8.2m}
(1)若B⊆A,求實(shí)數(shù)m的取值范圍
(2)若A∪(CRB)=R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.y=2sin2x+2sinx+2的值域?yàn)閇$\frac{3}{2}$,6],當(dāng)y取最大值時(shí),x=$\frac{π}{2}$+2kπ,k∈Z;當(dāng)y取最小值時(shí),x=$-\frac{π}{6}$+2kπ,k∈Z,或$-\frac{5}{6}$+2kπ,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)A(3,4,4),B(-2,-1,5),C(4,5,0),若點(diǎn)D在線段AC上,且△ABD的面積是△ABC的面積的$\frac{1}{3}$,求線段BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{3}$x3-alnx+a,a∈R,g(x)=$\frac{1}{3}$x3-bx2+c在點(diǎn)(3,g(3))處的切線方程為y=-3x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)f(x)-g(x)≥0在[1,十∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案