【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

【答案】
(1)解:曲線C的極坐標(biāo)方程是ρ=2cosθ,化為ρ2=2ρcosθ,可得直角坐標(biāo)方程:x2+y2=2x.

直線L的參數(shù)方程是 (t為參數(shù)),消去參數(shù)t可得


(2)解:把 (t為參數(shù)),代入方程:x2+y2=2x化為: +m2﹣2m=0,

由△>0,解得﹣1<m<3.

∴t1t2=m2﹣2m.

∵|PA||PB|=1=|t1t2|,

∴m2﹣2m=±1,

解得 ,1.又滿足△>0.

∴實(shí)數(shù)m=1 ,1.


【解析】(1)曲線C的極坐標(biāo)方程是ρ=2cosθ,化為ρ2=2ρcosθ,利用 可得直角坐標(biāo)方程.直線L的參數(shù)方程是 (t為參數(shù)),把t=2y代入 +m消去參數(shù)t即可得出.(2)把 (t為參數(shù)),代入方程:x2+y2=2x化為: +m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA||PB|=t1t2 , 即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解該校教師對(duì)教工食堂的滿意度情況,隨機(jī)訪問(wèn)了名教師.根據(jù)這名教師對(duì)該食堂的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為: ,…, .

(1)求頻率分布直方圖中的值;

(2)從評(píng)分在的受訪教師中,隨機(jī)抽取2人,求此2人的評(píng)分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求曲線在點(diǎn)處切線的方程.

求函數(shù)的單調(diào)區(qū)間.

當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若執(zhí)行如圖的程序框圖,輸出S的值為6,則判斷框中應(yīng)填入的條件是(

A.k<32?
B.k<65?
C.k<64?
D.k<31?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式an=5﹣n,其前n項(xiàng)和為Sn , 將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來(lái)順序恰為等比數(shù)列{bn}的前3項(xiàng),記{bn}的前n項(xiàng)和為Tn , 若存在m∈N* , 使對(duì)任意n∈N* , 總有Sn<Tn+λ恒成立,則實(shí)數(shù)λ的取值范圍是(
A.λ≥2
B.λ>3
C.λ≥3
D.λ>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex(lnx﹣2k)(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè) ,對(duì)任意x>0,證明:(x+1)g(x)<ex+ex2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量為10噸至25噸時(shí),月生產(chǎn)總成本(萬(wàn)元)可以看出月產(chǎn)量(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時(shí),月生產(chǎn)成本為20萬(wàn)元,當(dāng)月產(chǎn)量為15噸時(shí),月生產(chǎn)總成本最低至17.5萬(wàn)元.

(I)寫出月生產(chǎn)總成本(萬(wàn)元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;

(II)已知該產(chǎn)品銷售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn),并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為(
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個(gè)“P數(shù)對(duì)”,設(shè)函數(shù)的定義域?yàn)?/span>,且。

(1)若的一個(gè)“P數(shù)對(duì)”,且,求常數(shù)的值;

(2)若(1,1)是的一個(gè)“P數(shù)對(duì)”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個(gè)“P數(shù)對(duì)”,且當(dāng)時(shí),,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案