【題目】如圖,A,B,C三地有直道相通,其中AB、BC為步行道,AC為機(jī)動(dòng)車道,已知A在B的正北方向6千米處,C在B的正東方向千米處,某校開展步行活動(dòng),從A地出發(fā),經(jīng)B地到達(dá)C地,中途不休息.
(1)媒體轉(zhuǎn)播車從A出發(fā),沿AC行至點(diǎn)P處,此時(shí),求PB的距離;
(2)媒體記者隨隊(duì)步行,媒體轉(zhuǎn)播車從A地沿AC前往C,兩者同時(shí)出發(fā),步行的速度為6千米/小時(shí),為配合轉(zhuǎn)播,轉(zhuǎn)播車的速度為12千米/小時(shí),記者和轉(zhuǎn)播車通過專用對(duì)講機(jī)保持聯(lián)系,轉(zhuǎn)播車開到C地后原地等待,直到記者到達(dá)C地,若對(duì)講機(jī)的有效通話距離不超過9千米,求他們通過對(duì)講機(jī)能保持聯(lián)系的總時(shí)長(zhǎng).
【答案】(1);
(2)
【解析】
(1)在中求出的值,再在中由正弦定理求解;
(2)設(shè)步行時(shí)間為t小時(shí),記者位于E,媒體車位于F,按照時(shí),E在AB上;時(shí),E在BC上兩種情況分類討論求得EF,再解不等式,即可.
解:(1)在中,,
,則,
在中,由正弦定理得,
則;
(2)設(shè)步行時(shí)間為小時(shí),記者位于E,媒體車位于F,
①當(dāng)時(shí),E在AB上,,,
由余弦定理可得
由得,
所以,
②當(dāng)時(shí),此時(shí)F在點(diǎn)C處,E在BC上,且,
,
由得,解得,
故他們通過對(duì)講機(jī)能保持聯(lián)系的總時(shí)長(zhǎng)為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某日A,B,C三個(gè)城市18個(gè)銷售點(diǎn)的小麥價(jià)格如下表:
銷售點(diǎn)序號(hào) | 所屬城市 | 小麥價(jià)格(元/噸) | 銷售點(diǎn)序號(hào) | 所屬城市 | 小麥價(jià)格(元/噸) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(1)甲以B市5個(gè)銷售點(diǎn)小麥價(jià)格的中位數(shù)作為購買價(jià)格,乙從C市4個(gè)銷售點(diǎn)中隨機(jī)挑選2個(gè)了解小麥價(jià)格.記乙挑選的2個(gè)銷售點(diǎn)中小麥價(jià)格比甲的購買價(jià)格高的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)如果一個(gè)城市的銷售點(diǎn)小麥價(jià)格方差越大,則稱其價(jià)格差異性越大.請(qǐng)你對(duì)A,B,C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,如果存在函數(shù)g(x),使得f(x)≥g(x)對(duì)于一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,0).
(1)若a=1,b=2.寫出函數(shù)f(x)的一個(gè)承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個(gè)承托函數(shù),且f(x)為函數(shù)的一個(gè)承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)是定義域?yàn)?/span>的奇函數(shù).
(1)若,試求不等式的解集;
(2)若,且,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某通信公司為了配合客戶的不同需要,現(xiàn)設(shè)計(jì)A,B兩種優(yōu)惠方案,這兩種方案的應(yīng)付話費(fèi)y(元)與通話時(shí)間x(分鐘)之間的關(guān)系如圖所示(實(shí)線部分).(注:圖中MN∥CD)
(1)若通話時(shí)間為2小時(shí),則按方案A,B各付話費(fèi)多少元?
(2)方案B從500分鐘以后,每分鐘收費(fèi)多少元?
(3)通話時(shí)間在什么范圍內(nèi),方案B才會(huì)比方案A優(yōu)惠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,點(diǎn)在上,點(diǎn)為的中點(diǎn),求點(diǎn)到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月22日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場(chǎng)非法銷售的野生動(dòng).專家通過全基因組比對(duì)發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%和40%的序列相似性.這種新型冠狀病毒對(duì)人們的健康生命帶來了嚴(yán)重威脅因此,某生物疫苗研究所加緊對(duì)新型冠狀病毒疫苗進(jìn)行實(shí)驗(yàn),并將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計(jì) | 50 | 50 | 100 |
現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)能否有99.9%把握認(rèn)為注射此種疫苗對(duì)預(yù)防新型冠狀病毒有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com