6.如果實數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{2x-y-2≤0}\end{array}}\right.$,則$z=\frac{x}{y}$的最大值是( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.4

分析 作出不等式組對應的平面區(qū)域,利用直線斜率的幾何意義進行求解.

解答 解:$z=\frac{x}{y}$=$\frac{1}{\frac{y}{x}}$,設k=$\frac{y}{x}$,則k的幾何意義是區(qū)域內的點到原點的斜率,
作出不等式組對應的平面區(qū)域,
由圖象知OA的斜率最小,此時z最大,

$\left\{\begin{array}{l}{x+y-2=0}\\{2x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即A($\frac{4}{3}$,$\frac{2}{3}$),
此時z取得最大值z=$\frac{\frac{4}{3}}{\frac{2}{3}}$=2,
故選:C.

點評 本題主要考查線性規(guī)劃的應用,利用直線斜率的性質,利用數(shù)形結合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“m=n”是“方程mx2+ny2=1表示圓”的充要條件
C.命題:“?x0∈R,x${\;}_{0}^{2}$+2x0+a≤0”的否定是:“?x∈R,x2+2x+a>0”
D.若直線x-ay=0與直線x+ay=0互相垂直,則a=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x,y滿足$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,則z=2x-y的最大值為(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某同學在研究性學習中,收集到某制藥廠2015年前5月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
月份x12345
生產(chǎn)產(chǎn)量y(萬盒)44566
(1)該同學為了求出y關于x的線性回歸方程$\hat y=\hat bx+\hat a$,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出$\hat b$=0.6,試求出$\hat a$的值,并估計該廠六月份生產(chǎn)的甲膠囊的數(shù)量;
(2)若某藥店現(xiàn)有該制藥廠二月份生產(chǎn)的甲膠囊2盒和三月份生產(chǎn)的甲膠囊3盒,小紅同學從中隨機購買了2盒,后經(jīng)了解發(fā)現(xiàn)該制藥廠二月份生產(chǎn)的所有甲膠囊均存在質量問題.記“小紅同學所購買的2盒甲膠囊中存在質量問題的盒數(shù)為1”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.f(x)=ex(2x-1)-ax+a(a∈R),e為自然對數(shù)的底數(shù).
(1)當a=1時,求函數(shù)f(x)的單調區(qū)間;
(2)若存在實數(shù)x∈(1,+∞),x滿足f(x)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.曲線y=lnx+x2在點(1,1)處的切線方程為3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)f(x)=ax-4,g(x)═loga|x|(a>0,a≠1)且$f(\frac{1}{2})•g(\frac{1}{2})<0$,則函數(shù)f(x),g(x)在同一坐標系中的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.△ABC的內角A,B,C的對邊分別為a,b,c,滿足$\frac{a-b+c}$≤$\frac{c}{a+b-c}$,則角A的最大值是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=-lnx+t(x-1),t為實數(shù).
(1)討論函數(shù)f(x)在(0,1]上的單調性;
(2)若當t=$\frac{1}{2}$時,$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案