10.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點(diǎn),且經(jīng)過(guò)C,D兩點(diǎn),則該雙曲線的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{3}+1$

分析 利用雙曲線的簡(jiǎn)單性質(zhì),直接列出關(guān)系式求解雙曲線的離心率即可.

解答 解:等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點(diǎn),且經(jīng)過(guò)C,D兩點(diǎn),
雙曲線過(guò)點(diǎn)C時(shí),$e=\frac{c}{a}=\frac{AB}{CA-CB}=\sqrt{3}+1$,
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,離心率的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.$(α為參數(shù)),M為C1上的動(dòng)點(diǎn),P點(diǎn)滿足$\overrightarrow{OP}=2\overrightarrow{OM}$,設(shè)點(diǎn)P的軌跡為曲線C2
(1)求C1,C2的極坐標(biāo)方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線$θ=\frac{π}{3}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若$\frac{a+i}{1+2i}=ti$(i為虛數(shù)單位,a,t∈R),則t+a等于( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形(陰影部分)圍成一個(gè)大正方形,中間空出一個(gè)小正方形組成的圖形,若在大正方形內(nèi)隨機(jī)取一點(diǎn),該點(diǎn)落在小正方形的概率為$\frac{1}{5}$,則圖中直角三角形中較大銳角的正弦值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)=x2•ex,若函數(shù)g(x)=f2(x)-kf(x)+1恰有三個(gè)零點(diǎn),則下列結(jié)論正確的是( 。
A.k=±2B.k=$\frac{8}{{e}^{2}}$C.k=2D.k=$\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.我們知道:“平面中到定點(diǎn)等于定長(zhǎng)的點(diǎn)軌跡是圓”拓展至空間:“空間中到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡是球”,類似可得:已知A(-1,0,0),B(1,0,0),則點(diǎn)集{P(x,y,z)||PA|-|PB|=1}在空間中的軌跡描述正確的是( 。
A.以A,B為焦點(diǎn)的雙曲線繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)曲面
B.以A,B為焦點(diǎn)的橢球體
C.以A,B為焦點(diǎn)的雙曲線單支繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)曲面
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過(guò)上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點(diǎn).
(1)證明:三棱錐Q-ABP體積VQ-ABP≤$\frac{1}{3}$,并指出P和Q滿足什么條件時(shí)有AP⊥BQ
(2)求二面角P-AB-Q平面角的取值范圍,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a、b、c是△ABC的三條邊長(zhǎng),則下列結(jié)論中正確的個(gè)數(shù)是( 。
①對(duì)于一切x∈(-∞,1)都有f(x)>0;
②存在x>0使ax,bx,cx不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為調(diào)查我市居民對(duì)“文明出行”相關(guān)規(guī)定的了解情況,某媒體隨機(jī)選取了30名行人進(jìn)行問(wèn)卷調(diào)查,將他們的年齡整理后分組,制成下表:
年齡(歲)(12,22](22,32](32,42](42,52](52,62](62,72]
頻數(shù)m3754n
己知從中任選一人,年齡在(12,22]的頻率為0.3
(I)求m,n的值;
(II)通過(guò)問(wèn)卷得知,參與調(diào)查的52歲以上的兩個(gè)組中,了解相關(guān)規(guī)定的人各占$\frac{1}{2}$.現(xiàn)從這兩個(gè)組中任選2人,求選取的2人都了解相關(guān)規(guī)定的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案