20.設(shè)行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|=m,|\begin{array}{l}{{a}_{13}}&{{a}_{11}}\\{{a}_{23}}&{{a}_{21}}\end{array}|$=n,則行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}+{a}_{13}}\\{{a}_{21}}&{{a}_{22}+{a}_{23}}\end{array}|$等于(  )
A.m+nB.-(m+n)C.n-mD.m-n

分析 利用二階行列式展開法則進(jìn)行求解.

解答 解:∵$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|=m,|\begin{array}{l}{{a}_{13}}&{{a}_{11}}\\{{a}_{23}}&{{a}_{21}}\end{array}|$=n,
∴m=a11a22-a21a12,
n=a13a21-a23a11,
∴$|\begin{array}{l}{{a}_{11}}&{{a}_{12}+{a}_{13}}\\{{a}_{21}}&{{a}_{22}+{a}_{23}}\end{array}|$=a11(a22+a23)-a21(a12+a13
=a11a22-a21a12-(a21a13-a23a11
=m-n.
故選:D.

點(diǎn)評(píng) 本題考查二階行列式的計(jì)算,是基礎(chǔ)題,解題時(shí)要注意二階行列式展開法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=2-|x+1|的單調(diào)遞增區(qū)間為( 。
A.(-∞,-1)B.(-∞,0)C.(0,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.上饒某中學(xué)研究性學(xué)習(xí)小組為調(diào)查市民喜歡觀看體育節(jié)目是否與性別有關(guān),隨機(jī)抽取了55名市民,得到數(shù)據(jù)如下表:
 喜歡不喜歡合計(jì)
20525
102030
合計(jì)302555
(1)判斷是否有99.5%的把握認(rèn)為喜歡觀看體育節(jié)目與性別有關(guān)?
(2)用分層抽樣的方法從喜歡觀看體育節(jié)目的市民中隨機(jī)抽取6人作進(jìn)一步調(diào)查,將這6位市民作為一個(gè)樣本,從中任選2人,求男市民人數(shù)ξ的分布列和期望.
下面的臨界值表參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=loga(x2+1)(a>0)在[0,1]上的最大值為1,函數(shù)g(x)=($\frac{1}{3}$)x-m,若?x1∈[0,3],?x2∈[1,2],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是(  )
A.[$\frac{1}{9}$,+∞)B.[$\frac{1}{3}$,+∞)C.(-∞,$\frac{1}{9}$]D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算:$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某底面為正方形的四棱錐的三視圖,則該四棱錐的表面積為( 。
A.$\sqrt{2}$+$\sqrt{6}$B.2+2$\sqrt{6}$C.2+2$\sqrt{2}$+2$\sqrt{6}$D.2+3$\sqrt{2}$+$\sqrt{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為$\frac{20+\sqrt{133}+\sqrt{61}}{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.當(dāng)0<α<$\frac{π}{4}$時(shí),sinα<cosα(比較大小)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)x,y是正實(shí)數(shù),且2x+y=4,求lgx+lgy的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案