12分)
要從兩名同學(xué)中挑出一名,代表班級參加射擊比賽,根據(jù)以往的成績記錄同學(xué)甲擊中目標(biāo)的環(huán)數(shù)為X1的分布列為
X1
5
6
7
8
9
10
P
0.03
0.09
0.20
0.31
0.27
0.10
同學(xué)乙擊目標(biāo)的環(huán)數(shù)X2的分布列為
X2
5
6
7
8
9
P
0.01
0.05
0.20
0.41
0.33
 (1)請你評價兩位同學(xué)的射擊水平(用數(shù)據(jù)作依據(jù));
(2)如果其它班參加選手成績都在9環(huán)左右,本班應(yīng)派哪一位選手參賽,如果其它班參賽選手的成績都在7環(huán)左右呢?
(1) 兩位同學(xué)射擊平均中靶環(huán)數(shù)是相等的,同學(xué)甲的方差DX1大于同學(xué)乙的方差DX2,因此同學(xué)乙發(fā)揮的更穩(wěn)定。
(2) 如果其它班的參賽選手的射擊成績都在9環(huán)左右就派甲同學(xué)去參加,若其它班的參賽選手的成績都在7環(huán)左右,就派同學(xué)乙去參加。
(1)利用期望和方差公式求出兩變量的期望和方差;(2)根據(jù)第(1)問的結(jié)論選擇水平高的選手
解:(1)EX1,EX2
=8
DX1=1.50  DX2=0.8
兩位同學(xué)射擊平均中靶環(huán)數(shù)是相等的,同學(xué)甲的方差DX1大于同學(xué)乙的方差DX2,因此同學(xué)乙發(fā)揮的更穩(wěn)定。
(2)如果其它班的參賽選手的射擊成績都在9環(huán)左右就派甲同學(xué)去參加,若其它班的參賽選手的成績都在7環(huán)左右,就派同學(xué)乙去參加。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(滿分12分)某射擊比賽,開始時在距目標(biāo)100米處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標(biāo)已在150米處,這時命中記2分,且停止射擊;若第二次仍未命中還可以進行第三次射擊,但此時目標(biāo)已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分。已知射手在100米處擊中目標(biāo)的概率為,他的命中率與目標(biāo)距離的平方成反比,且各次射擊都是獨立的。
(1)求這名射手在射擊比賽中命中目標(biāo)的概率;
(2)求這名射手在比賽中得分的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩人進行象棋比賽,規(guī)定:每次勝者得1分,負(fù)者得0分;當(dāng)其中一人的得分比另一人的得分多2分時則贏得這場比賽,此時比賽結(jié)束;同時規(guī)定比賽的次數(shù)最多不超過6次,即經(jīng)6次比賽,得分多者贏得比賽,得分相等為和局。已知每次比賽甲獲勝的概率為,乙獲勝的概率為,假定各次比賽相互獨立,比賽經(jīng)ξ次結(jié)束,求:
(1)ξ=2的概率;
(2)隨機變量ξ的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
某電子科技公司遇到一個技術(shù)性難題,決定成立甲、乙兩個攻關(guān)小組,按要求各自獨立進行為期一個月的技術(shù)攻關(guān),同時決定對攻關(guān)限期內(nèi)攻克技術(shù)難題的小組給予獎勵. 已知此技術(shù)難題在攻關(guān)期限內(nèi)被甲小組攻克的概率為,被乙小組攻克的概率為,
(1)設(shè)為攻關(guān)期滿時獲獎的攻關(guān)小組數(shù),求的分布列及數(shù)學(xué)期望;
(2)設(shè)為攻關(guān)期滿時獲獎的攻關(guān)小組數(shù)與沒有獲獎的攻關(guān)小組數(shù)之差的平方,記“函數(shù)在定義域內(nèi)單調(diào)遞增”為事件C,求事件C發(fā)生的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)高三年級班參加高考體檢,個班中,任選個班先參加視力檢查. (I)求這個班中恰有個班班級序號是偶數(shù)的概率;
(II)設(shè)為這個班中兩班序號相鄰的組數(shù)(例如:若選出的班為班,則有兩組相鄰的,班和班,此時的值是).求隨機變量的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市第一中學(xué)要用鮮花布置花圃中五個不同區(qū)域,要求同一區(qū)域上用同一種顏色的鮮花,相鄰區(qū)域使用不同顏色的鮮花.現(xiàn)有紅、黃、藍、白、紫五種不同顏色的鮮花可供任意選擇.
(1)當(dāng)區(qū)域同時用紅色鮮花時,求布置花圃的不同方法的種數(shù);
(2)求恰有兩個區(qū)域用紅色鮮花的概率;
(3)記為花圃中用紅色鮮花布置的區(qū)域的個數(shù),求隨機變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機變量ξ的分布列為
ξ
1
2
3
4
5
P
0.1
0.2
0.4
0.2
0.1
η=2ξ-3,則η的期望為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機變量的分布如圖所示則數(shù)學(xué)期望         

0
1
2
3





 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

同室4人各寫1張賀年卡,先集中起來,然后每人從中各拿1張賀年卡,記取回自己賀年卡的同學(xué)個數(shù)為,則的數(shù)學(xué)期望為      

查看答案和解析>>

同步練習(xí)冊答案