【題目】有4位同學(xué)在同一天的上午、下午參加身高與體重、立定跳遠(yuǎn)、肺活量握力、臺(tái)階五個(gè)項(xiàng)目的測(cè)試,每位同學(xué)測(cè)試兩個(gè)項(xiàng)目,分別在上午和下午,且每人上午和下午測(cè)試的項(xiàng)目不能相同.若上午不測(cè)握力,下午不測(cè)臺(tái)階,其余項(xiàng)目上午、下午都各測(cè)試一人,則不同的安排方式的種數(shù)為( )

A. 264 B. 72 C. 266 D. 274

【答案】A

【解析】先安排 位同學(xué)參加上午的身高與體重、立定跳遠(yuǎn)肺活量、臺(tái)階測(cè)試,共有 種不同安排方式;接下來安排下午的身高與體重、立定跳遠(yuǎn)、肺活量握力測(cè)試,假設(shè)A、BC同學(xué)上午分別安排的是身高與體重、立定跳遠(yuǎn)、肺活量測(cè)試,若D同學(xué)選擇握力測(cè)試,安排A、B、C同學(xué)分別交叉測(cè)試,有 種;若D同學(xué)選擇身高與體重、立定跳遠(yuǎn)肺活量測(cè)試中的 種,有 種方式,安排AB、C同學(xué)進(jìn)行測(cè)試有 種;根據(jù)計(jì)數(shù)原理共有安排方式的種數(shù)為 故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長(zhǎng)方體ABCDA1B1C1D1的對(duì)稱中心在坐標(biāo)原點(diǎn),交于同一頂點(diǎn)的三個(gè)面分別平行于三個(gè)坐標(biāo)平面,頂點(diǎn)A(-2,-3,-1),求其他七個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知直線方程為(2m)x(12m)y43m0,求證:不論m為何實(shí)數(shù),此直線必過定點(diǎn);

(2)過這定點(diǎn)引一直線,使它夾在兩坐標(biāo)軸間的線段被這點(diǎn)平分,求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺(tái)機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)的零件的多少隨機(jī)器的運(yùn)轉(zhuǎn)的速度的變化而變化,下表為抽樣試驗(yàn)的結(jié)果:

轉(zhuǎn)速/(轉(zhuǎn)/秒)

16

14

12

8

每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)/件

11

9

8

5

(1)畫出散點(diǎn)圖;

(2)如果對(duì)有線性相關(guān)關(guān)系,請(qǐng)畫出一條直線近似地表示這種線性關(guān)系;

(3)在實(shí)際生產(chǎn)中,若它們的近似方程為,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多為件,那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆陜西省西安市鐵一中學(xué)高三上學(xué)期第五次模擬考試數(shù)學(xué)(文)】已知向量,,且函數(shù).

(Ⅰ)當(dāng)函數(shù)f(x)上的最大值為3時(shí),求a的值;

(Ⅱ)在(Ⅰ)的條件下,若對(duì)任意的,函數(shù)y=f(x),的圖像與直線y=-1有且僅有兩個(gè)不同的交點(diǎn),試確定b的值.并求函數(shù)y=f(x)(0,b]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,:

(1)1個(gè)孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個(gè)結(jié)論:

小王任意買1張電影票座號(hào)是3的倍數(shù)的可能性比座號(hào)是5的倍數(shù)的可能性大;

高一(1)班有女生22,男生23,從中任找1,則找出的女生可能性大于找出男生的可能性;

1枚質(zhì)地均勻的硬幣正面朝上的可能性與反面朝上的可能性相同.

其中正確結(jié)論的序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.

(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程.

(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

(1)某人10月份應(yīng)交此項(xiàng)稅款為350元,則他10月份的工資收入是多少?

(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案