【題目】如圖,已知長方體ABCDA1B1C1D1的對稱中心在坐標原點,交于同一頂點的三個面分別平行于三個坐標平面,頂點A(-2,-3,-1),求其他七個頂點的坐標.

【答案】A1(2,-3,1),B1(2,3,1)C1(2,3,1),D1(2,-3,1)

【解析】試題分析: 根據(jù)對稱關系直接寫出各點坐標

試題解析:由題意,得點B與點A關于xOz平面對稱,

故點B的坐標為(-2,3,-1);

D與點A關于yOz平面對稱,故點D的坐標為(2,-3,-1);

C與點A關于z軸對稱,故點C的坐標為(2,3,-1);

由于點A1,B1,C1D1分別與點A,B,CD關于xOy平面對稱,

故點A1B1,C1D1的坐標分別為A1(2,-3,1),B1(2,3,1),C1(2,3,1),D1(2,-3,1)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知底角為的等腰梯形,底邊長為12,腰長為,當一條垂直于底邊 (垂足為)的直線從左至右移動(與梯形有公共點)時,直線把梯形分成兩部分.

(1)令,試寫出直線右邊部分的面積的函數(shù)解析式;

(2)在(1)的條件下,令.構造函數(shù)

①判斷函數(shù)上的單調性;

②判斷函數(shù)在定義域內是否具有單調性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電進行了調查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照, , , , , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值并估計居民月均用電量的中位數(shù);

(Ⅱ)現(xiàn)從第8組和第9組的居民中任選取2戶居民進行訪問,則兩組中各有一戶被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺體體積公式:,其中分別為臺體上、下底面面積,為臺體高.

(Ⅰ)證明:直線 平面;

(Ⅱ)若,,三棱錐的體積,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三點A(-1,1,2),B(1,2,-1),C(a,0,3),是否存在實數(shù)a,使A、B、C共線?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓上每一點的縱坐標不變,橫坐標變?yōu)樵瓉淼?/span>,得曲線C.

)寫出C的參數(shù)方程;

)設直線l C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1 P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列各式的值:

(1)2log32-log3+log38-5;

(2)[(1-log63)2+log62·log618]÷log64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有4位同學在同一天的上午、下午參加身高與體重、立定跳遠、肺活量、握力、臺階五個項目的測試,每位同學測試兩個項目,分別在上午和下午,且每人上午和下午測試的項目不能相同.若上午不測握力,下午不測臺階,其余項目上午、下午都各測試一人,則不同的安排方式的種數(shù)為( )

A. 264 B. 72 C. 266 D. 274

查看答案和解析>>

同步練習冊答案