已知函數(shù)
(1)判斷的奇偶性;
(2)求滿足的取值范圍.
(1) 為奇函數(shù)    (2)
本試題主要是考查了函數(shù)的奇偶性和函數(shù)與不等式的關(guān)系的綜合運用。
(1)由條件知,,所以,,為奇函數(shù)
(2)解不等式,由于,得到,求解得到結(jié)論
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)建造一個容積為,深為的長方體無蓋水池,如果池底和池壁的造價分別為每平方米120元和80元,那么水池的最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知集合的映射,那么集合中元素2在中所對應(yīng)的元素是(   )
A.2B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(-3)=-2,則f(3)+f(0)=(  )
A.3B.-3C.2 D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)當(dāng)時,求的極值;
(2)當(dāng)時,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域為,對任意的解集為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),其導(dǎo)函數(shù)為
的單調(diào)減區(qū)間是;
的極小值是
③當(dāng)時,對任意的,恒有
④函數(shù)滿足
其中假命題的個數(shù)為(   )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四組函數(shù),表示同一函數(shù)的是(     )
A.,
B.,
C.,
D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

汽車和自行車分別從地和地同時開出,如下圖,各沿箭頭方向(兩方向垂直)勻速前進,汽車和自行車的速度分別是10米/秒和5米/秒,已知米.(汽車開到地即停止)
(Ⅰ)經(jīng)過秒后,汽車到達處,自行車到達處,設(shè)間距離為,試寫出關(guān)于的函數(shù)關(guān)系式,并求其定義域.
(Ⅱ)經(jīng)過多少時間后,汽車和自行車之間的距離最短?最短距離是多少?

查看答案和解析>>

同步練習(xí)冊答案