18.若直線(a+1)x+ay=0與直線ax+2y=1垂直,則實(shí)數(shù)a=0或-3.

分析 對(duì)a分類討論,利用兩條直線相互垂直的條件即可得出.

解答 解:當(dāng)a=0時(shí),兩條直線方程分別化為:x=0,2y=1,此時(shí)兩條直線垂直,因此a=0滿足條件.
當(dāng)a≠0時(shí),兩條直線的斜率分別為-$\frac{a+1}{a}$,-$\frac{a}{2}$,而-$\frac{a+1}{a}$•(-$\frac{a}{2}$)=-1,此時(shí)a=-3.
綜上可得:a=0或-3.
故答案為:0或-3.

點(diǎn)評(píng) 本題考查了兩條直線相互垂直與斜率的關(guān)系、分類討論,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.中國(guó)共產(chǎn)黨第十八屆中央委員會(huì)第五次全體會(huì)議認(rèn)為,到二○二○年全面建成小康社會(huì),是我們黨確定的“兩個(gè)一百年”奮斗目標(biāo)的第一個(gè)百年奮斗目標(biāo).全會(huì)提出了全面建成小康社會(huì)新的目標(biāo)要求:經(jīng)濟(jì)保持中高速增長(zhǎng),在提高發(fā)展平衡性、包容性、可持續(xù)性的基礎(chǔ)上,到二○二○年國(guó)內(nèi)生產(chǎn)總值和城鄉(xiāng)居民人均收入比二0一0年翻一番,產(chǎn)業(yè)邁向中高端水平,消費(fèi)對(duì)經(jīng)濟(jì)增長(zhǎng)貢獻(xiàn)明顯加大,戶籍人口城鎮(zhèn)化率加快提高.
設(shè)從二0一一年起,城鄉(xiāng)居民人均收入每一年比上一年都增長(zhǎng)p%.下面給出了依據(jù)“到二0二0年城鄉(xiāng)居民人均收入比二0一0年翻一番”列出的關(guān)于p的四個(gè)關(guān)系式:
①(1+p%)×10=2;
②(1+p%)10=2;
③lg(1+p%)=2;
④1+10×p%=2.
其中正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圓心為C,直線l:y=x+4.
(Ⅰ)寫出該圓的圓心坐標(biāo)及半徑;
(Ⅱ)求直線l被圓C所截得弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)某等腰三角形的底角為α,頂角為β,且cosβ=$\frac{3}{5}$.
(Ⅰ)求sinα的值;
(Ⅱ)若函數(shù)f(x)=tanx在[-$\frac{π}{3}$,α]上的值域與函數(shù)g(x)=2sin(2x-$\frac{π}{3}$)在[0,m]上的值域相同,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知圓x2+y2+2x-2y+2a=0截直線x+y+2=0所得弦長(zhǎng)為4,則實(shí)數(shù)a的值是(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a=20.3,b=log0.23,c=log32,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{3},x>0}\\{cosx,-\frac{π}{2}<x<0}\end{array}\right.$(a∈R),若f(f(-$\frac{π}{3}$))=1,則a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.設(shè)∠DAB=θ(0<θ<$\frac{π}{2}$),L為等腰梯形ABCD的周長(zhǎng).
(1)求周長(zhǎng)L與θ的函數(shù)解析式;
(2)試問(wèn)周長(zhǎng)L是否存在最大值?若存在,請(qǐng)求出最大值,并指出此時(shí)θ的大小;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知定義在R上的奇函數(shù)f(x)滿足:當(dāng)x≥0時(shí),f(x)=x3,若不等式f(-4t)>f(2m+mt2)對(duì)任意實(shí)數(shù)t恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案