【題目】已知,分別是雙曲線的左頂點(diǎn)、右焦點(diǎn),過(guò)的直線的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點(diǎn).若,則的離心率是( )

A. B. C. D.

【答案】D

【解析】

由已知條件設(shè)出直線l的方程,與y=﹣x聯(lián)立,求P點(diǎn)坐標(biāo),將x0帶入直線l,求Q點(diǎn)坐標(biāo),由APAQ,知kAPkAQ,由此求離心率.

A,F分別是雙曲線的左頂點(diǎn)、右焦點(diǎn),

A(﹣a,0Fc,0),

∵過(guò)F的直線lC的一條漸近線垂直,

且與另一條漸近線和y軸分別交于P,Q兩點(diǎn),

∴直線l的方程為:y=﹣,

直線ly=﹣y=﹣x聯(lián)立:

,解得P點(diǎn)

x0帶入直線ly=﹣,得Q0,),

APAQ,∴kAPkAQ×=﹣1

化簡(jiǎn)得b2aca2=﹣c2,

b2c2a2代入,得2c22a2ac0

同除a22e22e0,

e,或e(舍).

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)滿足下列條件:當(dāng)時(shí),的最小值為0,且成立;當(dāng)時(shí),恒成立.

1)求的解析式;

2)若對(duì),不等式恒成立、求實(shí)數(shù)的取值范圍;

3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),只要當(dāng)時(shí),就有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中三年級(jí)的甲、乙兩個(gè)同學(xué)同時(shí)參加某大學(xué)的自主招生,在申請(qǐng)的材料中提交了某學(xué)科10次的考試成績(jī),記錄如下:

甲:78 86 95 97 88 82 76 89 92 95

乙:73 83 69 82 93 86 79 75 84 99

(1)根據(jù)兩組數(shù)據(jù),作出兩人成績(jī)的莖葉圖,并通過(guò)莖葉圖比較兩人本學(xué)科成績(jī)平均值的大小關(guān)系及方差的大小關(guān)系(不要求計(jì)算具體值,直接寫(xiě)出結(jié)論即可)

(2)現(xiàn)將兩人的名次分為三個(gè)等級(jí):

成績(jī)分?jǐn)?shù)

等級(jí)

合格

良好

優(yōu)秀

根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績(jī)組合中隨機(jī)選取一組,求選中甲同學(xué)成績(jī)高于乙同學(xué)成績(jī)的組合的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某服裝商場(chǎng),當(dāng)某一季節(jié)即將來(lái)臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開(kāi)始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.

(1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;

(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,,試問(wèn)該服裝第幾周的每件銷售利潤(rùn)最大?(每件銷售利潤(rùn)=每件銷售價(jià)格-每件進(jìn)價(jià))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).

(1)求雙曲線C2的方程;

(2)若直線lykx與雙曲線C2恒有兩個(gè)不同的交點(diǎn)AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;

(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,分別是,的中點(diǎn).

(1)判定是否垂直,并說(shuō)明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=x2aln x-1,函數(shù)F(x)=.

(1)如果函數(shù)f (x)的圖象上的每一點(diǎn)處的切線斜率都是正數(shù),求實(shí)數(shù)a的取值范圍;

(2)當(dāng)a=2時(shí),你認(rèn)為函數(shù)y的圖象與yF(x)的圖象有多少個(gè)公共點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;

(2)將曲線經(jīng)過(guò)伸縮變換后得到曲線,若 分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案