分析 (I)利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的性質(zhì),得出結(jié)論.
(II)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:(I)∵$f(x)=sin({x+\frac{π}{3}})+cos({x-\frac{π}{6}})+a$=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx+$\frac{\sqrt{3}}{2}$cosx+$\frac{1}{2}$sinx+a=2sin(x+$\frac{π}{3}$)+a,
∵f(x)max=2+a=1,
∴a=-1.
(II)由(I)可得:f(x)=2sin(x+$\frac{π}{3}$)-1,
∴把函數(shù)y=sinx的圖象向左平移$\frac{π}{3}$個單位,可得函數(shù)y=sin(x+$\frac{π}{3}$)的圖象;
再把所得圖象上各點的縱坐標(biāo)變?yōu)樵瓉淼?倍,可得函數(shù)y=2sin(x+$\frac{π}{3}$)的圖象;
再把所得圖象向下平移1個單位,可得函數(shù)y=2sin(x+$\frac{π}{3}$)-1的圖象.
點評 本題主要考查三角函數(shù)的恒等變換,正弦函數(shù)的性質(zhì),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,考查了數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{18}$ | B. | $\frac{5}{36}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<1} | B. | {x|-2<x<1} | C. | {0} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 1 | 2 | 3 | 4 |
y | m | 3.2 | 4.8 | 7.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com