【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓方程;
(2)設(shè)不過(guò)原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率依次為,滿足,試問(wèn):當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請(qǐng)說(shuō)明理由.
【答案】(1);(2)是定值,
【解析】
試題分析:(1)求橢圓的標(biāo)準(zhǔn)方程,就是要確定的值,只要找到兩個(gè)關(guān)于的等式即可,本題中一個(gè)離心率,一個(gè)是橢圓過(guò)已知點(diǎn),由此可得;(2)設(shè)交點(diǎn),,把直線方程與橢圓方程聯(lián)立方程組,消去后,可得,計(jì)算,化簡(jiǎn)后并把代入可得結(jié)論.
試題解析:(1)依題意可得 解得.
所以橢圓的方程是.
(2)當(dāng)變化時(shí),為定值,證明如下:
由得,.
設(shè),,則, (*)
∵直線的斜率依次為,且,
∴,得,
將(*)代入得:,
經(jīng)檢驗(yàn)滿足
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系x0y中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn))為極點(diǎn),x軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,分別求這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)和函數(shù)(,,).問(wèn):(1)證明:在上是增函數(shù);
(2)把函數(shù)和寫(xiě)成分段函數(shù)的形式,并畫(huà)出它們的圖象,總結(jié)出的圖象是如何由的圖象得到的.請(qǐng)利用上面你的結(jié)論說(shuō)明:的圖象關(guān)于對(duì)稱(chēng);
(3)當(dāng),,時(shí),若對(duì)于任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),求證:平面AMN∥平面EFDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為實(shí)數(shù),),.
(1)若,且函數(shù)的值域?yàn)?/span>,求得解析式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè),,,且為偶函數(shù),判斷是否大于零,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的個(gè)數(shù)是( )
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4
B.2
C.3
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.若直線平面,直線平面,則直線不一定平行于直線
B.若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面
C.若平面平面,則內(nèi)一定不存在直線平行于平面
D.若平面平面,平面平面,,則一定垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.
(1)求圓C的普通方程和直線的直角坐標(biāo)方程;
(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)求函數(shù)的的單調(diào)遞增區(qū)間;
(2)設(shè),問(wèn)是否存在極值, 若存在, 請(qǐng)求出極值; 若不存在, 請(qǐng)說(shuō)明理由;
(3)設(shè)是函數(shù)圖象上任意不同的兩點(diǎn), 線段的中點(diǎn)為,直線的斜率為.證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com