精英家教網 > 高中數學 > 題目詳情

若函數f(x)=ax3-bx+4,當x=2時,函數f(x)有極值-.
(1)求函數的解析式.
(2)若方程f(x)=k有3個不同的根,求實數k的取值范圍.

(1) f(x)=x3-4x+4.(2)-<k<.

解析試題分析:f′(x)=3ax2-b.
(1)由題意得解得
故所求函數的解析式為f(x)=x3-4x+4.
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),
令f′(x)=0,得x=2或x=-2.
當x變化時,f′(x),f(x)的變化情況如下表:

x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
f′(x)

0

0

f(x)
?

?


因此,當x=-2時,f(x)有極大值,
當x=2時,f(x)有極小值-,
所以函數f(x)=x3-4x+4的圖象大致如圖所示.

若f(x)=k有3個不同的根,則直線y=k與函數f(x)的圖象有3個交點,所以-<k<.
考點:本題主要考查函數的解析式,應用導數研究函數的單調性、極值。
點評:中檔題,利用導數研究函數的單調性、極值、最值,是導數的應用中的基本問題。本題(II)應用導數,通過研究函數的單調性、極值等,對函數的圖象有了充分的了解,明確了函數零點情況。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,,().
(1)求函數的極值;
(2)已知,函數,判斷并證明的單調性;
(3)設,試比較,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是二次函數,不等式的解集是,且在點處的切線與直線平行.求的解析式;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的最小值;
(2)若對所有都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線 y = x3 + x-2 在點 P0 處的切線  與直線4x-y-1=0平行,且點 P0 在第三象限,
(1)求P0的坐標;
(2)若直線  , 且 l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線方程為.
(Ⅰ)求實數的值;
(Ⅱ)設是[)上的增函數, 求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

理科(本小題14分)已知函數,當時,函數取得極大值.
(Ⅰ)求實數的值;(Ⅱ)已知結論:若函數在區(qū)間內導數都存在,且,則存在,使得.試用這個結論證明:若,函數,則對任意,都有;(Ⅲ)已知正數滿足求證:當,時,對任意大于,且互不相等的實數,都有

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 設函數.
(Ⅰ)判斷能否為函數的極值點,并說明理由;
(Ⅱ)若存在,使得定義在上的函數處取得最大值,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

計算由曲線,直線以及兩坐標軸所圍成的圖形的面積S.

查看答案和解析>>

同步練習冊答案