【題目】已知,函數(shù).

(1)當(dāng)時(shí),畫出函數(shù)的大致圖像;

(2)當(dāng)時(shí),根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;

(3)試討論關(guān)于x的方程解的個(gè)數(shù).

【答案】詳見(jiàn)解析

【解析】

(1)當(dāng)時(shí),將函數(shù)化為,由此畫出函數(shù)的圖像.(2)根據(jù)(1)的圖像寫出函數(shù)的單調(diào)減區(qū)間,利用單調(diào)性的定義,通過(guò)計(jì)算,證得函數(shù)單調(diào)性.(3),由于,故函數(shù)圖像與(1)中的圖像類似.將方程解的個(gè)數(shù)問(wèn)題轉(zhuǎn)化為圖像的交點(diǎn)個(gè)數(shù)來(lái)解.將分成五種情況,討論兩個(gè)函數(shù)交點(diǎn)的個(gè)數(shù).

(1)如圖所示

(2)單調(diào)遞減區(qū)間:

證明:設(shè)任意的

因?yàn)?/span>,所以

于是,即

所以函數(shù)上是單調(diào)遞減函數(shù)

(3) 由題意知方程的解得個(gè)數(shù)等價(jià)于函數(shù)的圖像與直線的交點(diǎn)個(gè)數(shù).即函數(shù)的圖象與直線的交點(diǎn)個(gè)數(shù)

,注意到

當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立,借助圖像知

所以,當(dāng)時(shí),函數(shù)的圖像與直線有1個(gè)交點(diǎn);

當(dāng),時(shí),函數(shù)的圖像與直線有2個(gè)交點(diǎn);

當(dāng),時(shí),函數(shù)的圖像與直線有3個(gè)交點(diǎn);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若sin(A﹣B)+sinC= sinA.
(1)求角B的值;
(2)若b=2,求a2+c2的最大值,并求取得最大值時(shí)角A,C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a,b滿足f(2a+b)<1,的取值范圍是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)橢圓上一點(diǎn)M作圓的兩條切線,切點(diǎn)為A、B,過(guò)A、B的直線與軸和軸分別交于,則面積的最小值為( )

A. B. 1 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某算法的程序框圖,則程序運(yùn)行后輸出的結(jié)果是(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0
(1)求C的大;
(2)求a2+b2的最大值,并求取得最大值時(shí)角A,B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , 分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)在理科綜合分?jǐn)?shù)為, , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex﹣2x.
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=f(2x)﹣4bf(x),當(dāng)x>0時(shí),g(x)>0,求b的最大值;
(3)已知1.4142< <1.4143,估計(jì)ln2的近似值(精確到0.001).

查看答案和解析>>

同步練習(xí)冊(cè)答案