【題目】根據(jù)所學(xué)知識完成題目:
(1)若a、b、m、n∈R+ , 求證: ;
(2)利用(1)的結(jié)論,求下列問題:已知 ,求 的最小值,并求出此時x的值.
【答案】
(1)證明:∵a、b、m、n∈R+,∴(a+b) =m2+n2+ ≥m2+n2+2mn=(m+n)2,當(dāng)且僅當(dāng)bm=an時取等號,∴
(2) , = + ≥ =25,當(dāng)且僅當(dāng)2(1﹣2x)=32x,即當(dāng) 時取得最小值,最小值為25.
【解析】(1)將不等式的左邊乘以a+b,再使用均值不等式,結(jié)論得證,(2)將變?yōu)?/span>,再結(jié)合(1)中結(jié)論,不難得出當(dāng)且僅當(dāng)2(1﹣2x)=32x時取得最小值25,此時x=.
【考點精析】本題主要考查了基本不等式和不等式的證明的相關(guān)知識點,需要掌握基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:;不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1﹣x)﹣ln(1+x),則f(x)是( )
A.奇函數(shù),且在(0,1)上是增函數(shù)
B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)
D.偶函數(shù),且在(0,1)上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p: ,命題q:x∈R,x2﹣2ax+2﹣a=0,若命題“p∧q”是真命題,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣2]∪{1}
B.(﹣∞,﹣2]∪[1,2]
C.[1,+∞)
D.[﹣2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是圓x2+y2=36的圓心,R是橢圓 上的一動點,且滿足 .
(1)求動點Q的軌跡方程
(2)若直線y=x+1與曲線Q相交于A、B兩點,求弦AB的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C1:x2+y2=16和圓C2:(x﹣7)2+(y﹣4)2=4,
(1)求過點(4,6)的圓C1的切線方程;
(2)設(shè)P為坐標平面上的點,且滿足:存在過點P的無窮多對互相垂直的直線l1和l2 , 它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長是直線l2被圓C2截得的弦長的2倍.試求所有滿足條件的點P的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時,每年的生產(chǎn)成本y萬元與年產(chǎn)量x噸之間的關(guān)系可可近似地表示為y= ﹣30x+4000.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量x的取值范圍;
(2)求年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸的最低成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1﹣EC﹣D的大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點.應(yīng)用空間向量方法求解下列問題.
(1)求EF的長
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com