14.不等式的解集$|{1+x+\frac{x^2}{2}}|<1$是( 。
A.{x|-1<x<0}B.$\left\{{\left.x\right|-\frac{3}{2}<x<0}\right\}$C.$\left\{{\left.x\right|-\frac{5}{4}<x<0}\right\}$D.{x|-2<x<0}

分析 將絕對值不等式轉(zhuǎn)化為二次不等式,即可得出結(jié)論.

解答 解:∵$|{1+x+\frac{x^2}{2}}|<1$,
∴-1<1+x+$\frac{{x}^{2}}{2}$<1,
∴$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+x+2>0}\\{\frac{{x}^{2}}{2}+x<0}\end{array}\right.$,
∴-2<x<0.
故選:D.

點評 本題考查絕對值不等式的解法,考查學(xué)生的計算能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a,b∈R,則“a+b>2且ab>1”是“a>1且b>1”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程lnx=-x+3的根所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax3-3x2+1(a∈R),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩個等差數(shù)列{an},{bn},它們的前n項和分別記為Sn,Tn,若$\frac{S_n}{T_n}=\frac{n}{n+7}$,則 $\frac{a_7}{b_7}$=(  )
A.$\frac{1}{2}$B.$\frac{13}{20}$C.$\frac{4}{11}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1)、B(x2,y2)兩點,若x1+x2=10,則弦AB的長度為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在正三棱柱ABC-A1B1C1中,若AB:BB1=$\sqrt{2}:1$,則AB1與平面BB1C1C所成角的大小為( 。
A.45°B.60°C.30°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}的首項a1=1,{bn}為等比數(shù)列且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,若b50b51=2016${\;}^{\frac{1}{50}}$,則a101=( 。
A.2015B.4030C.2016D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從甲、乙、丙、丁、戊5個人中選1名組長1名副組長,但甲不能當(dāng)副組長,不同的選法種數(shù)是(  )
A.6B.10C.16D.20

查看答案和解析>>

同步練習(xí)冊答案