【題目】已知函數(shù)

1)若設(shè)是函數(shù)的極值點(diǎn),求函數(shù)上的最大值;

2)設(shè)函數(shù)兩處取到極值,求實(shí)數(shù)k的取值范圍.

【答案】(1);(2)

【解析】

(1)先求出,再根據(jù)函數(shù)的極值點(diǎn)一定是導(dǎo)函數(shù)的零點(diǎn),列出方程后可求出值,然后利用函數(shù)的導(dǎo)數(shù)與最值的關(guān)系,即可求解;

(2)寫出,得到,令后可得

根據(jù)題意可得函數(shù)的圖象有兩個(gè)不同的交點(diǎn),由數(shù)形結(jié)合即可求解.

解:(1)由題意,,

是函數(shù)的極值點(diǎn),

,即,

,

由函數(shù)的單調(diào)性性質(zhì)可知,在其函數(shù)的定義域上是一個(gè)增函數(shù),且,

上恒成立,上單調(diào)遞增,

.

(2),

,則可得,

因?yàn)楹瘮?shù)兩處取到極值

所以函數(shù)的圖象有兩個(gè)不同的交點(diǎn)

,令

則在;在;在

由數(shù)形結(jié)合可知:

所以實(shí)數(shù)k的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.如圖,在四棱錐中,底面是正方形,側(cè)棱,的中點(diǎn),于點(diǎn)

1)證明//平面;

2)證明平面;

3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?/span>13s19s之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13s且小于14s;第二組,成績大于等于14s且小于15s;……;第六組,成績大于等于18s且小于等于19s.如圖是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17s的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為,成績大于等于15s且小于17s的學(xué)生人數(shù)為,平均成績?yōu)?/span>,則從頻率分布直方圖中可分析出,,的值分別為(

A.90%35,15.86B.90%,45,15.5

C.10%35,16D.10%,4516.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)快速增長、居民收入穩(wěn)步提升,消費(fèi)結(jié)構(gòu)逐步優(yōu)化升級,生活品質(zhì)顯著增強(qiáng),美好生活藍(lán)圖正在快速構(gòu)建.某市城鎮(zhèn)居民人均消費(fèi)支出從1998年的7500元增長到2018年的40000.1998年與2018年該市城鎮(zhèn)居民消費(fèi)結(jié)構(gòu)對比如下圖所示:

1988年某市城鎮(zhèn)居民消費(fèi)結(jié)構(gòu) 2018年某市城鎮(zhèn)居民消費(fèi)結(jié)構(gòu)

則下列敘述中不正確的是( )

A.2018年該市城鎮(zhèn)居民人均食品支出占比同1998年相比大幅度降低

B.2018年該市城鎮(zhèn)居民人均教育文化娛樂支出同1998年相比提高減少

C.2018年該市城鎮(zhèn)居民人均醫(yī)療保健支出占比同1998年相比提高60%

D.2018年該市城鎮(zhèn)居民人均交通和通信支出突破5000元,大約是1998年的14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過,.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;

(Ⅱ)四邊形的四個(gè)頂點(diǎn)都在橢圓上,且對角線,過原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是直角梯形, ,又,直線與直線所成的角為

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中,正確的是(

A.命題“”的否定是“

B.若命題“”為真命題,則命題“”為真命題

C.命題“若,則”的否命題是“若,則

D.”是“命題‘’為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,,,,點(diǎn)在底面上的射影是的中點(diǎn),

1)求證:直線平面;

2)若,分別為、的中點(diǎn),求直線與平面所成角的正弦值;

3)當(dāng)四棱錐的體積最大時(shí),求二面角的大。

查看答案和解析>>

同步練習(xí)冊答案