(2013•遼寧)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=
4
5
,則C的離心率e=
5
7
5
7
分析:設(shè)橢圓右焦點(diǎn)為F',連接AF'、BF',可得四邊形AFBF'為平行四邊形,得|AF|=|BF'|=6.△ABF中利用余弦定理算出|BF|=8,從而得到|AF|2+|BF|2=|AB|2,得∠AFB=90°,所以c=|OF|=
1
2
|AB|=5.根據(jù)橢圓的定義得到2a=|BF|+|BF'|=14,得a=7,最后結(jié)合橢圓的離心率公式即可算出橢圓C的離心率.
解答:解:設(shè)橢圓的右焦點(diǎn)為F',連接AF'、BF'
∵AB與FF'互相平分,∴四邊形AFBF'為平行四邊形,可得|AF|=|BF'|=6
∵△ABF中,|AB|=10,|AF|=6,cos∠ABF=
4
5
,
∴由余弦定理|AF|2=|AB|2+|BF|2-2|AB|×|BF|cos∠ABF,
可得62=102+|BF|2-2×10×|BF|×
4
5
,解之得|BF|=8
由此可得,2a=|BF|+|BF'|=14,得a=7
∵△ABF中,|AF|2+|BF|2=100=|AB|2
∴∠AFB=90°,可得|OF|=
1
2
|AB|=5,即c=5
因此,橢圓C的離心率e=
c
a
=
5
7

故答案為:
5
7
點(diǎn)評(píng):本題給出橢圓經(jīng)過中心的弦AB與左焦點(diǎn)構(gòu)成三邊分別為6、8、10的直角三角形,求橢圓的離心率.著重考查了橢圓的定義與標(biāo)準(zhǔn)方程、橢圓的簡單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)已知三棱柱ABC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)已知函數(shù)f(x)=ln(
1+9x2
-3x)+1,則f(lg2)+f(lg
1
2
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)已知集合A={0,1,2,3,4},B={x||x|<2},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連結(jié)AF,BF,若|AB|=10,|AF|=6,cos∠ABF=
4
5
,則C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案