15.在△ABC中,a,b,c分別為內(nèi)角的對邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,b=$\sqrt{2}$,則B=( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{6}$或$\frac{5π}{6}$

分析 由已知利用正弦定理,特殊角的三角函數(shù)值即可求解.

解答 解:∵a=$\sqrt{3}$,A=$\frac{π}{3}$,b=$\sqrt{2}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{\sqrt{2}}{2}$,
∵B∈(0,π),a>b,∴A>B,
∴B=$\frac{π}{4}$.
故選:A.

點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且EF=$\frac{{\sqrt{2}}}{2}$,則下列結(jié)論中正確的個數(shù)是( 。
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱錐E-ABF的體積為定值;
④存在某個位置使得異面直線AE與BF成角30o
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+$\sqrt{3}$asinC-b-c=0
(Ⅰ)求A的大小
(Ⅱ)若△ABC為銳角三角形,且a=$\sqrt{3}$,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)(2-x)(2x-1)5=${a}_{0}+{a}_{1}(x-1)+{a}_{2}(x-1)^{2}+…+{a}_{6}(x-1)^{6}$,則a2等于30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在[0,2π]上隨機取一個值α,使得關(guān)于x的方程x2-4x•sinα+1=0有實根的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{2}{3}{x}^{3}-\frac{3}{2}{x}^{2}+lo{g}_{a}x$,(a>0且a≠1),
(Ⅰ)若f(x)為定義域上的增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)令a=e,設(shè)函數(shù)g(x)=f(x)-$\frac{2}{3}{x}^{3}-4lnx+6x$,且g(x1)+g(x2)=0,求證:${x}_{1}+{x}_{2}≥2+\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)$\frac{2}{1-i}$-2i(i為虛數(shù)單位)的共軛復(fù)數(shù)的虛部等于( 。
A.-1B.1-iC.iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PD⊥平面 ABCD,AC⊥BD于點O,E為線段PB 上的點,且BD⊥AE.
(1)求證:PD∥平面 AEC;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PD=3且AB=CD.求三棱錐A-EBC 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)計算(lg2)2+lg5×lg20+$(\root{3}{2}×\sqrt{3}{)^6}$
(2)已知tanα=2,求$\frac{2sinα-5cosα}{4sinα-7cosα}$.

查看答案和解析>>

同步練習(xí)冊答案