3.設(shè)(2-x)(2x-1)5=${a}_{0}+{a}_{1}(x-1)+{a}_{2}(x-1)^{2}+…+{a}_{6}(x-1)^{6}$,則a2等于30.

分析 設(shè)x-1=t,代入化簡(jiǎn)(2-x)(2x-1)5,求出a2t2項(xiàng),即可得出a2的值.

解答 解:設(shè)x-1=t,則
(2-x)(2x-1)5=(1-t)(2t+1)5=a0+a1t+a2t2+…+a6t6,
∴a2t2=${C}_{5}^{2}$•(2t)2-t${C}_{5}^{1}$•(2t),
∴a2=4${C}_{5}^{2}$-2${C}_{5}^{1}$=30.
故答案為:30.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=f(x)是定義在無(wú)限集合D上的函數(shù),并且滿足對(duì)于任意的x∈D,f1(x)=f(x),f2(x)=f[f1(x)],…,fn(x)=f[fn-1(x)],(n≥2,n∈N).
①若y=f(x)=$\frac{1+x}{1-3x}$,則f8(1)=0;
②試寫出滿足下面條件的一個(gè)函數(shù)y=f(x):存在x0∈D,使得由f1(x0),f2(x0),…,fn(x0),…組成的集合有且僅有兩個(gè)元素,這樣的函數(shù)可以是f(x)=$\left\{\begin{array}{l}{-1,x≥0}\\{1,x<0}\end{array}\right.$(只需寫出一個(gè)滿足條件的函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A,中心為O,若橢圓過(guò)點(diǎn)P(-$\frac{1}{2}$,$\frac{1}{2}$),且AP⊥PO.
(1)求橢圓M的方程;
(2)過(guò)點(diǎn)P作兩條斜率分別為k1,k2的直線交橢圓M于D、E兩點(diǎn),且k1+k2=0,求證:直線DE的斜率為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.cos780°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PD⊥底面ABCD,E,F(xiàn) 分別是 AB,PC 的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)設(shè) PD=CD=4,∠BAD=60°,求二面角 E-AF-D 大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.兩個(gè)球的體積之比為8:27,那么這兩個(gè)球的表面積的比為4:9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,a,b,c分別為內(nèi)角的對(duì)邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,b=$\sqrt{2}$,則B=( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.有關(guān)線性回歸的說(shuō)法,不正確的是(  )
A.相關(guān)關(guān)系的兩個(gè)變量不是因果關(guān)系
B.散點(diǎn)圖能直觀地反映數(shù)據(jù)的相關(guān)程度
C.回歸直線最能代表線性相關(guān)的兩個(gè)變量之間的關(guān)系
D.任一組數(shù)據(jù)都有回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了解學(xué)生身高情況,某校以8%的比例對(duì)全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為1:1,測(cè)得男生身高情況的頻率分布直方圖(如圖所示):
(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案