A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 在①中,由EF∥BD,能推導(dǎo)出EF∥平面ABCD;在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,從而得到面ACF⊥平面BEF;在③中,三棱錐E-ABF的體積與三棱錐A-BEF的體積相等,從而三棱錐E-ABF的體積為定值;在④中,令上底面中心為O,得到存在某個位置使得異面直線AE與BF成角30°.
解答 解:由正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點(diǎn)E、F,且EF=$\frac{{\sqrt{2}}}{2}$,知:
在①中,由EF∥BD,且EF?平面ABCD,BD?平面ABCD,得EF∥平面ABCD,故①正確;
在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,
而BE?面BDD1B1,BF?面BDD1B1,∴AC⊥平面BEF,
∵AC?平面ACF,∴面ACF⊥平面BEF,故②正確;
在③中,三棱錐E-ABF的體積與三棱錐A-BEF的體積相等,
三棱錐A-BEF的底面積和高都是定值,故三棱錐E-ABF的體積為定值,故③正確;
在④中,令上底面中心為O,當(dāng)E與D1重合時(shí),此時(shí)點(diǎn)F與O重合,
則兩異面直線所成的角是∠OBC1,可求解∠OBC1=300,
故存在某個位置使得異面直線AE與BF成角30°,故④正確.
故選:D.
點(diǎn)評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、空間想象能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4) | B. | (-4,2) | ||
C. | $({\frac{5}{2}_{\;}}{,_{\;}}4)$ | D. | $(-{∞_{\;}}{,_{\;}}\frac{5}{2})∪({4_{\;}}{,_{\;}}+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x±y=0 | B. | 4x±3y=0 | C. | 3x±4y=0 | D. | x±y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com