分析 Sm-1=-9,Sm=0,其中m>3,可得:(m-1)a1+$\frac{(m-1)(m-2)}{2}$d=-9,ma1+$\frac{m(m-1)}{2}$d=0,化為:d=$\frac{18}{m-1}$.由于m>3,且m∈N*,d為奇數,且d>1,通過分類討論驗證即可得出.
解答 解:∵Sm-1=-9,Sm=0,其中m>3,
∴(m-1)a1+$\frac{(m-1)(m-2)}{2}$d=-9,
ma1+$\frac{m(m-1)}{2}$d=0,
可得:d=$\frac{18}{m-1}$.
∵m>3,且m∈N*,d為奇數,且d>1,
∴d=3,m=7.
∴a1=-9.
∴an=-9+3(n-1)=3n-12.
故答案為:3n-12.
點評 本題考查了等差數列的通項公式及其前n項和公式,考查了分類討論、推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$,-$\sqrt{2}$ | B. | $\sqrt{2}$,1 | C. | $\sqrt{2}$,0 | D. | 2,-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 2a | D. | $\frac{3}{4}$a |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com