已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0),函數(shù)y=f(x)的圖象在點(2,f(2))處的切線與x軸平行.
(1)用關于m的代數(shù)式表示n.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
【答案】分析:(1)先對函數(shù)f(x)進行求導,又根據(jù)f'(2)=0可得到關于m的代數(shù)式.
(2)將(1)中m的代數(shù)式n代入函數(shù)f(x)中消去n,可得f'(x)=3mx2-6mx,當f'(x)>0時x的取值區(qū)間為所求.
解答:解:(Ⅰ)由已知條件得f'(x)=3mx2+2nx,
又f'(2)=0,∴3m+n=0,故n=-3m.
(Ⅱ)∵n=-3m,∴f(x)=mx3-3mx2,∴f'(x)=3mx2-6mx.
令f'(x)>0,即3mx2-6mx>0,
當m>0時,解得x<0或x>2,則函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,0)和(2,+∞);
當m<0時,解得0<x<2,則函數(shù)f(x)的單調(diào)增區(qū)間是(0,2).
綜上,當m>0時,函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,0)和(2,+∞);
當m<0時,函數(shù)f(x)的單調(diào)增區(qū)間是(0,2).
點評:本題主要考查通過求函數(shù)的導數(shù)來求函數(shù)增減區(qū)間的問題.